

RTCA/DO-178B Tables

Appendix B

B-1

Table A-1
Software Planning Process

Objective

Applicability
by

SW Level

Output

Control
Category
by SW level

 Description Ref. A B C D Description Ref. A B C D
1 Software development

and integral processes
activities are defined.

4.1a
4.3

❍ ❍ ❍ ❍ Plan for Software Aspects of
Certification
Software Development Plan

Software Verification Plan

SCM Plan

SQA Plan

11.1

11.2

11.3

11.4

11.5

1
1
1
1
1

1
1
1
1
1

1
2
2
2
2

1
2
2
2
2

2 Transition criteria, inter-
relationships and
sequencing among
processes are defined.

4.1b
4.3

❍ ❍ ❍

3 Software life cycle
environment is defined.

4.1c ❍ ❍ ❍

4 Additional
considerations are
addressed.

4.1d ❍ ❍ ❍ ❍

5 Software development
standards are defined.

4.1e ❍ ❍ ❍ SW Requirements Standards

SW Design Standards

SW Code Standards

11.6

11.7

11.8

1
1
1

1
1
1

2
2
2

6 Software plans comply
with this document.

4.1f
4.6

❍ ❍ ❍ SQA Records
Software Verification
Results

11.19
11.14

2
2

2
2

2
2

7 Software plans are
coordinated.

4.1g
4.6

❍ ❍ ❍ SQA Records
Software Verification
Results

11.19
11.14

2
2

2
2

2
2

LEGEND: #### The objective should be satisfied with independence.

 ❍ The objective should be satisfied.

 Blank Satisfaction of objective is at applicant's discretion.

 1 Data satisfies the objectives of Control Category 1 (CC1).

 2 Data satisfies the objectives of Control Category 2 (CC2).

B-2

Table A-2

Software Development Processes

Objective

Applicability
by

SW Level

Output

Control
Category
by SW level

 Description Ref. A B C D Description Ref. A B C D
1 High-level requirements

are developed.
5.1.1a

❍ ❍ ❍ ❍ Software Requirements
Data

11.9 1 1 1 1

2 Derived high-level
requirements are
defined.

5.1.1b ❍ ❍ ❍ ❍ Software Requirements
Data

11.9 1 1 1 1

3 Software architecture is
developed.

5.2.1a ❍ ❍ ❍ ❍ Design Description 11.10 1 1 2 2
4 Low-level requirements

are developed.
5.2.1a ❍ ❍ ❍ ❍ Design Description 11.10 1 1 2 2

5 Derived low-level
requirements are
defined.

5.2.1b ❍ ❍ ❍ ❍ Design Description 11.10 1 1 2 2

6 Source Code is
developed.

5.3.1a ❍ ❍ ❍ ❍ Source Code 11.11 1 1 1 1
7 Executable Object Code

is produced and
integrated in the target
computer.

5.4.1a ❍ ❍ ❍ ❍ Executable Object Code 11.12 1 1 1 1

LEGEND: #### The objective should be satisfied with independence.

 ❍ The objective should be satisfied.

 Blank Satisfaction of objective is at applicant's discretion.

 1 Data satisfies the objectives of Control Category 1 (CC1).

 2 Data satisfies the objectives of Control Category 2 (CC2).

B-3

Table A-3

Verification Of Outputs of Software Requirements Process

Objective

Applicability
by

SW Level

Output

Control
Category
by SW level

 Description Ref. A B C D Description Ref. A B C D
1 Software high-level

requirements comply
with system
requirements.

6.3.1a #### #### ❍ ❍ Software Verification
Results

11.14 2 2 2 2

2 High-level requirements
are accurate and
consistent.

6.3.1b #### #### ❍ ❍ Software Verification
Results

11.14 2 2 2 2

3 High-level requirements
are compatible with
target computer.

6.3.1c ❍ ❍ Software Verification
Results

11.14 2 2

4 High-level requirements
are verifiable.

6.3.1d ❍ ❍ ❍ Software Verification
Results

11.14 2 2 2
5 High-level requirements

conform to standards.
6.3.1e ❍ ❍ ❍ Software Verification

Results
11.14 2 2 2

6 High-level requirements
are traceable to system
requirements.

6.3.1f ❍ ❍ ❍ ❍ Software Verification
Results

11.14

2 2 2 2

7 Algorithms are accurate. 6.3.1g #### #### ❍ Software Verification
Results

11.14 2 2 2

LEGEND: #### The objective should be satisfied with independence.

 ❍ The objective should be satisfied.

 Blank Satisfaction of objective is at applicant's discretion.

 1 Data satisfies the objectives of Control Category 1 (CC1).

 2 Data satisfies the objectives of Control Category 2 (CC2).

B-4

Table A-4

Verification Of Outputs of Software Design Process

Objective

Applicability
by

SW Level

Output

Control
Category
by SW level

 Description Ref. A B C D Description Ref. A B C D
1 Low-level requirements

comply with high-level
requirements.

6.3.2a #### #### ❍ Software Verification
Results

11.14 2 2 2

2 Low-level requirements
are accurate and
consistent.

6.3.2b #### #### ❍ Software Verification
Results

11.14 2 2 2

3 Low-level requirements
are compatible with
target computer.

6.3.2c ❍ ❍ Software Verification
Results

11.14 2 2

4 Low-level requirements
are verifiable.

6.3.2d ❍ ❍ Software Verification
Results

11.14 2 2
5 Low-level requirements

conform to standards.
6.3.2e ❍ ❍ ❍ Software Verification

Results
11.14 2 2 2

6 Low-level requirements
are traceable to high-
level requirements.

6.3.2f ❍ ❍ ❍ Software Verification
Results

11.14 2 2 2

7 Algorithms are accurate. 6.3.2g #### #### ❍ Software Verification
Results

11.14 2 2 2
8 Software architecture is

compatible with high-
level requirements.

6.3.3a #### ❍ ❍ Software Verification
Results

11.14 2 2 2

9 Software architecture is
consistent.

6.3.2b #### ❍ ❍ Software Verification
Results

11.14 2 2 2
10 Software architecture is

compatible with target
computer.

6.3.3c ❍ ❍ Software Verification
Results

11.14 2 2

11 Software architecture is
verifiable.

6.3.3d ❍ ❍ Software Verification
Results

11.14 2 2
12 Software architecture

conforms to standards.
6.3.3e ❍ ❍ ❍ Software Verification

Results
11.14 2 2 2

13 Software partitioning
integrity is confirmed.

6.3.3f #### ❍ ❍ ❍ Software Verification
Results

11.14 2 2 2 2

LEGEND: #### The objective should be satisfied with independence.

 ❍ The objective should be satisfied.

 Blank Satisfaction of objective is at applicant's discretion.

 1 Data satisfies the objectives of Control Category 1 (CC1).

 2 Data satisfies the objectives of Control Category 2 (CC2).

B-5

Table A-5

Verification Of Outputs of Software Coding & Integration Processes

Objective

Applicability
by

SW Level

Output

Control
Category
by SW level

 Description Ref. A B C D Description Ref. A B C D
1 Source Code complies

with low-level
requirements.

6.3.4a #### #### ❍ Software Verification
Results

11.14 2 2 2

2 Source Code complies
with software
architecture.

6.3.4b #### ❍ ❍ Software Verification
Results

11.14 2 2 2

3 Source Code is
verifiable.

6.3.4c ❍ ❍ Software Verification
Results

11.14 2 2
4 Source Code conforms

to standards.
6.3.4d ❍ ❍ ❍ Software Verification

Results
11.14 2 2 2

5 Source Code is
traceable to low-level
requirements.

6.3.4e ❍ ❍ ❍ Software Verification
Results

11.14 2 2 2

6 Source Code is accurate
and consistent.

6.3.4f #### ❍ ❍ Software Verification
Results

11.14 2 2 2
7 Output of software

integration process is
complete and correct.

6.3.5 ❍ ❍ ❍ Software Verification
Results

11.14 2 2 2

LEGEND: #### The objective should be satisfied with independence.

 ❍ The objective should be satisfied.

 Blank Satisfaction of objective is at applicant's discretion.

 1 Data satisfies the objectives of Control Category 1 (CC1).

 2 Data satisfies the objectives of Control Category 2 (CC2).

B-6

Table A-6

Testing Of Outputs of Integration Process

Objective

Applicability
by

SW Level

Output

Control
Category
by SW level

 Description Ref. A B C D Description Ref. A B C D
1 Executable Object Code

complies with high-level
requirements.

6.4.2.1

6.4.3

❍ ❍ ❍ ❍ Software Verification Cases
and Procedures
Software Verification
Results

11.13

11.14

1

2
1

2
2

2
2

2
2 Executable Object Code

is robust with high-level
requirements.

6.4.2.2

6.4.3

❍ ❍ ❍ ❍ Software Verification Cases
and Procedures
Software Verification
Results

11.13

11.14

1

2
1

2
2

2
2

2
3 Executable Object Code

complies with low-level
requirements.

6.4.2.1

6.4.3

❍ Software Verification Cases
and Procedures
Software Verification
Results

11.13

11.14

1

2
1

2
2

2

4 Executable Object Code
is robust with low-level
requirements.

6.4.2.2

6.4.3

❍ ❍ Software Verification Cases
and Procedures
Software Verification
Results

11.13

11.14

1

2
1

2
2

2

5 Executable Object Code
is compatible with target
computer.

6.4.3a ❍ ❍ ❍ ❍ Software Verification Cases
and Procedures
Software Verification
Results

11.13

11.14

1

2
1

2
2

2
2

2

LEGEND: #### The objective should be satisfied with independence.

 ❍ The objective should be satisfied.

 Blank Satisfaction of objective is at applicant's discretion.

 1 Data satisfies the objectives of Control Category 1 (CC1).

 2 Data satisfies the objectives of Control Category 2 (CC2).

B-7

Table A-7

Verification Of Verification Process Results

Objective

Applicability
by

SW Level

Output

Control
Category
by SW level

 Description Ref. A B C D Description Ref. A B C D
1 Test procedures are

correct.
6.3.6b #### ❍ ❍ Software Verification Cases

and Procedures
11.13 2 2 2

2 Test results are correct
and discrepancies
explained.

6.3.6c #### ❍ ❍ Software Verification
Results

11.14 2 2 2

3 Test coverage of high-
level requirements is
achieved.

6.4.4.1 #### ❍ ❍ ❍ Software Verification
Results

11.14 2 2 2 2

4 Test coverage of low-
level requirements is
achieved.

6.4.4.1 #### ❍ ❍ Software Verification
Results

11.14 2 2 2

5 Test coverage of
software structure
(modified
condition/decision) is
achieved.

6.4.4.2 #### Software Verification
Results

11.14 2

6 Test coverage of
software structure
(decision coverage) is
achieved.

6.4.4.2a
6.4.4.2b

Software Verification
Results

11.14 2 2

7 Test coverage of
software structure
(statement coverage) is
achieved.

6.4.4.2a
6.4.4.2b

❍ Software Verification
Results

11.14 2 2 2

8 Test coverage of
software structure (data
coupling and control
coupling) is achieved.

6.4.4.2c #### #### ❍ Software Verification
Results

11.14 2 2 2

LEGEND: #### The objective should be satisfied with independence.

 ❍ The objective should be satisfied.

 Blank Satisfaction of objective is at applicant's discretion.

 1 Data satisfies the objectives of Control Category 1 (CC1).

 2 Data satisfies the objectives of Control Category 2 (CC2).

B-8

Table A-8

Software Configuration Management Process

Objective

Applicability
by

SW Level

Output

Control
Category
by SW level

 Description Ref. A B C D Description Ref. A B C D
1 Configuration items are

identified.
7.2.1 ❍ ❍ ❍ ❍ SCM Records 11.18 2 2 2 2

2 Baselines and
traceability are
established.

7.2.2 ❍ ❍ ❍ ❍ Software Configuration
Index

SCM Records

11.16

11.18

1

2

1

2

1

2

1

2
3 Problem reporting,

change control,
change review, and
configuration status
accounting are
established.

7.2.3
7.2.4
7.2.5
7.2.6

❍ ❍ ❍ ❍ Problem Reports

SCM Records

11.17

11.18

2

2
2

2
2

2
2

2

4 Archive, retrieval, and
release are established.

7.2.7 ❍ ❍ ❍ ❍ SCM Records 11.18 2 2 2 2
5 Software load control is

established.
7.2.8 ❍ ❍ ❍ ❍ SCM Records 11.18 2 2 2 2

6 Software life cycle
environment control is
established.

7.2.9 ❍ ❍ ❍ ❍ Software Life Cycle
Environment Configuration
Index

SCM Records

11.15

11.18

1

2

1

2

1

2

2

2
Note: (1) Although the software configuration management objectives of section 7 do not vary with

software level, the control category assigned to the software life cycle data may vary.

(2) The objectives of section 7 provide a sufficient integrity basis in the SCM process activities
without the need for the independence criteria.

LEGEND: #### The objective should be satisfied with independence.

 ❍ The objective should be satisfied.

 Blank Satisfaction of objective is at applicant's discretion.

 1 Data satisfies the objectives of Control Category 1 (CC1).

 2 Data satisfies the objectives of Control Category 2 (CC2).

B-9

Table A-9

Software Quality Assurance Process

Objective

Applicability
by

SW Level

Output

Control
Category
by SW level

 Description Ref. A B C D Description Ref. A B C D
1 Assurance is obtained

that software
development and
integral processes
comply with approved
software plans and
standards.

8.1a #### #### #### #### Software Quality Assurance
(SQA) Records

11.19 2 2 2 2

2 Assurance is obtained
that transition criteria for
the software life cycle
processes are satisfied.

8.1b #### #### SQA Records 11.19 2 2

3 Software conformity
review is conducted.

8.1c
8.3

SQA Records 11.19 2 2 2 2

LEGEND: #### The objective should be satisfied with independence.

 ❍ The objective should be satisfied.

 Blank Satisfaction of objective is at applicant's discretion.

 1 Data satisfies the objectives of Control Category 1 (CC1).

 2 Data satisfies the objectives of Control Category 2 (CC2).

B-10

Table A-10

Certification Liaison Process

Objective

Applicability
by

SW Level

Output

Control
Category
by SW level

 Description Ref. A B C D Description Ref. A B C D
1 Communication and

understanding between
the applicant and the
certification authority is
established.

9.0

❍ ❍ ❍ ❍ Plan for Software Aspects of
Certification

11.1 1 1 1 1

2 The means of
compliance is proposed
and agreement with the
Plan for Software
Aspects of Certification
is obtained.

9.1 ❍ ❍ ❍ ❍ Plan for Software Aspects of
Certification

11.1 1 1 1 1

3 Compliance
substantiation is
provided.

9.2 ❍ ❍ ❍ ❍ Software Accomplishment
Summary
Software Configuration
Index

11.20

11.16

1

1

1

1

1

1

1

1

LEGEND: #### The objective should be satisfied with independence.

 ❍ The objective should be satisfied.

 Blank Satisfaction of objective is at applicant's discretion.

 1 Data satisfies the objectives of Control Category 1 (CC1).

 2 Data satisfies the objectives of Control Category 2 (CC2).

Software Roles and Responsibilities

Appendix C

 C-1

Typical Roles and Responsibilities of the
FAA Software Team

(Version 2 – 1/22/01)

 C-2

Table of Contents

1.0 INTRODUCTION .. 3

2.0 ROLES AND RESPONSIBILITIES FOR THE SW-ASE.. 3
2.1 ROLES AND RESPONSIBILITIES OF SW-ASE’S IN SOFTWARE APPROVALS UNDER THE TC/ATC/STC
PROCESSES.. 3

2.1.1 Communication and Planning .. 3
2.2.2 Implementation ... 4
2.2.3 Future Planning and Involvement .. 5

2.3 ROLES AND RESPONSIBILITIES OF SW-ASE’S IN THE SOFTWARE ASPECTS OF THE PRODUCTION
CERTIFICATE PROCESS. ... 5
2.4 ROLES AND RESPONSIBILITIES OF SW-ASE’S IN THE SOFTWARE ASPECTS OF THE PARTS
MANUFACTURER APPROVAL (PMA) PROCESS.. 5
2.5 ROLES AND RESPONSIBILITIES OF SW-ASE’S IN THE SOFTWARE ASPECTS OF THE TECHNICAL
STANDARD ORDER AUTHORIZATION (TSOA) PROCESS.. 6

2.5.1 Description of the TSOA Process ... 6
2.5.2 Evaluating Capability... 7
2.5.3 Issuance of a TSOA... 7
2.5.4 Roles and Responsibilities in the TSOA Process .. 8

2.6 ROLES AND RESPONSIBILITIES OF SW-ASE’S IN THE SOFTWARE ASPECTS OF THE ACSEP PROCESS
 8
2.7 ROLES AND RESPONSIBILITIES FOR SW-ASE’S IN THE SOFTWARE ASPECTS OF THE CERTIFICATE
MANAGEMENT PROCESS ... 9
2.8 ROLES AND RESPONSIBILITIES FOR SW-ASE’S IN THE SOFTWARE ASPECTS OF THE DESIGNEE
MANAGEMENT PROCESS ... 10

3.0 ROLES AND RESPONSIBILITIES FOR SOFTWARE NRS... 11
3.1 NRS TECHNICAL LEADER ROLES AND RESPONSIBILITIES:.. 11
3.2 NRS CERTIFICATION SOFTWARE TEAM ADVISOR ROLES AND RESPONSIBILITIES: 11

4.0 ROLES AND RESPONSIBILITIES FOR SOFTWARE TS.. 12
4.1 TS TECHNICAL EXPERT ROLES AND RESPONSIBILITIES: ... 12
4.2 TS CERTIFICATION SOFTWARE TEAM MEMBER ROLES AND RESPONSIBILITIES:........................... 12

5.0 ROLES AND RESPONSIBILITIES FOR DIRECTORATE STAFF 13
5.1 THE DIRECTORATE STAFF ASSUMES THESE ROLES AND RESPONSIBILITIES:................................... 13

6.0 ROLES AND RESPONSIBILITIES FOR HEADQUARTERS STAFF. 14

Typical Roles and Responsibilities of the Software Team (Version 2 – 1/22/01)

 C-3

1.0 Introduction

This document describes the roles and responsibilities of the FAA’s software team. The
team may include the following members:

• Aviation Safety Engineer responsible for the software approval (SW-ASE),
• National Resource Specialist (NRS),
• Technical Specialist (TS),
• Directorate personnel, and/or
• Headquarters personnel.

The typical roles and responsibilities for each team member will be discussed below.

2.0 Roles and Responsibilities for the SW-ASE

The SW-ASE is the ACO engineer responsible for software review and approval. This
section describes the roles and responsibilities for SW-ASE’s for each of the following
processes:

(1) Type Certificate, Amended Type Certificate, Supplemental Type Certificate
(TC/ATC/STC) Process

(2) Production Certificate (PC) Process
(3) Parts Manufacturer Approval (PMA) Process
(4) Technical Standard Order Authorization (TSOA) Process
(5) Aircraft Certification Systems Evaluation Program (ACSEP) Process
(6) Certificate Management Process
(7) Designee Management Process

2.1 Roles and Responsibilities of SW-ASE’s in Software Approvals under the

TC/ATC/STC Processes

The process for approving software in TC/ATC/STC projects involves three roles for the
SW-ASE: (1) communicating with the applicant and planning the project, (2)
implementing the review and approval, and (3) determining the future level of
involvement based on lessons learned.

2.1.1 Communication and Planning

At the beginning of a project, the SW-ASE should carry out communication with the
applicant in order to plan the workload, number of software reviews, amount of
delegation, etc. The roles and responsibilities of the SW-ASE during the communication
and planning process are shown in Table 1.

Typical Roles and Responsibilities of the Software Team (Version 2 – 1/22/01)

 C-4

TABLE 1 - Roles and Responsibilities for SW-ASE’s in the Communication and
Planning for the Software Aspects of the TC/ATC/STC Process
• Participate in Type Board/Familiarization meeting.
• Determine level of FAA involvement for software aspects of project.
• Assess if unique design or new technology is being proposed (to determine if NRS,

TS, Directorate personnel, or HQ personnel should be involved).
• Determine designee utilization and resource availability.
• Coordinate software effort with Project Manager.
• Determine software level(s) based on System Safety Assessment (SSA).
• Determine the software life cycle data to be submitted.
• Review PSAC.
• If necessary, review the Software Configuration Management Plan (SCMP), the

Software Quality Assurance Plan (SQAP), the Software Development Plan (SDP),
and the Software Verification Plan (SVP).

• Provide comment to applicant and obtain resolution of plan deficiencies.
• Provide software input to CPP or equivalent project level plan, including designee

delegation plans and interactions during the project.
•
• Resolve any discrepancies in plans with applicant.

2.2.2 Implementation

Implementation of a project is the process of assuring the applicant’s software life cycle
processes comply with their approved plans and approving their data submittals after
determining compliance with DO-178B or other acceptable means. Implementation may
require on-site software reviews, desk-top reviews, and review of designee findings by
the SW-ASE. SW-ASE’s roles and responsibilities for implementation of the software
review and approval are shown in Table 2.

TABLE 2 - Roles and Responsibilities of SW-ASE’s in the Implementation of the
TC/ATC/STC Process
• Approve PSAC and, if necessary, SCMP, SQAP, SDP, and SVP.
• Monitor the applicant’s compliance to their plans.
• Resolve applicant process discrepancies with the approved software plans and DO-

178B or acceptable alternative.
• Coordinate tasks to support desk-top and on-site reviews.
• Perform on-site review, desk-top review, designee delegation, or a combination.
• Coordinate with systems certification Software Team.
• Identify and request specific conformity requirements.
• Approve Software Configuration Index (SCI) and Software Accomplishment

Summary (SWAS).
• Identify discrepancies and coordinate resolution.
• Identify process improvement opportunities.

Typical Roles and Responsibilities of the Software Team (Version 2 – 1/22/01)

 C-5

2.2.3 Future Planning and Involvement

At the end of each software review or approval, the SW-ASE may want to identify areas
for both the FAA and the applicant to improve upon.

2.3 Roles and Responsibilities of SW-ASE’s in the Software Aspects of the

Production Certificate Process.

The Production Certificate (PC) process begins with the application. The normal process
for issuance of a PC is to follow Order 8120.2A, “Production Approval and Surveillance
Procedures.” The cognizant MIDO, MISO, or CMO may conduct a preliminary audit of
the applicant’s Quality Control (QC) system and production facilities to ensure
compliance with the applicable Code of Federal Regulations (CFR) and policy. The PC
project may be assessed during the preliminary audit to determine whether the applicant
is involved in airborne software development and computer aided design, manufacturing,
inspection, and test (CADMIT) tools. The FAA assesses the project to ensure that the
airborne and CADMIT software is addressed in the QC and SCM systems. A Production
Certification Board (PCB) may be convened for initial production approvals to evaluate
the preliminary audit findings and recommendations from the cognizant MIDO, MISO,
or CMO.

The issuance of the PC is primarily the responsibility of the MIDO, MISO, or CMO.
However, the SW-ASE might be requested to assist the manufacturing office in
evaluation of automated inspection or test equipment used to verify type design.

2.4 Roles and Responsibilities of SW-ASE’s in the Software Aspects of the Parts

Manufacturer Approval (PMA) Process.

The PMA process begins with the application for PMA. The normal process for issuance
of PMA is to follow Order 8110.42, “Parts Manufacturer Approval Procedures.” This
process applies to anyone producing replacement or modification parts for sale for
installation on type certified products. Applicants may obtain design approval on
replacement or modification parts through Identicality, or Licensing Agreements.
Production manufacturing approval is obtained through the MIDO or MISO inspector’s
acceptance of the applicant’s fabrication inspection system and evaluation of applicant’s
facility to determine applicant’s compliance to 14 CFR part 21, Subpart K.

 Since software has some unique characteristics, notice 8110.79, Guidelines for the
approval of Field-Loadable Software by Finding Identicality through the Parts
Manufacturer Approval Process, identifies the PMA process for field-loadable software.
Field-loadable software is where PMAs are typically desired for software. At present, the
test and computation approach is not supported for PMA software.

Typical Roles and Responsibilities of the Software Team (Version 2 – 1/22/01)

 C-6

 Tables 3describe the roles and responsibilities for the SW-ASE to be performed for: (1)
PMA application, (2) approval by identicality with licensing agreement, and (2) approval
by identicality without licensing agreement. This specifically applies to PMA for
software. Reference notice 8110.79 as needed.

Function SW-ASE Roles and Responsibilities
PMA Application • Determine level of FAA software involvement.

• Determine designee utilization and resource availability.
• Coordinate software effort with Project Manager.
• Coordinate with the systems certification Software Team.
• Establish certification basis.
• Participate in familiarization and technical meetings.
• Review applicant’s software plans.
• Determine if unique design or new technology warrants

coordination with NRS, TS, Directorate, or Headquarters
personnel.

• Resolve plan discrepancies with the applicant.
• Perform on-site reviews, desk-top reviews, designee

delegation, or combination, as necessary.
• Identify discrepancies.
• Review SCI and SWAS.

Identicality With
Licensing Agreement

• SW-ASE is typically not involved, unless requested by the
manufacturing office.

Identicality Without
Licensing Agreement

• Specify software life cycle data to be submitted.
• Review submitted software life cycle data and resolve

discrepancies with applicant.
• Verify approved software configuration.

Table 3. Roles and Responsibilities for SW-ASE’s in the PMA Process

2.5 Roles and Responsibilities of SW-ASE’s in the Software Aspects of the

Technical Standard Order Authorization (TSOA) Process.

The TSOA is a joint authorization by both the ACO and MIDO or MISO, and has many
similarities to the TC/ATC/STC process. The normal process to obtain a TSOA is to
follow Order 8150.1A. However, the TSOA process also has some unique characteristics
that are described below.

2.5.1 Description of the TSOA Process

The TSOA is an authorization to manufacture equipment that meets TSO-specified
requirements; it is not approval to install the equipment on an aircraft or engine. The
design portion of the TSOA process is responsibility of the applicant. The applicant
submits the TSO data package and a statement of compliance to the ACO. Most TSO

Typical Roles and Responsibilities of the Software Team (Version 2 – 1/22/01)

 C-7

authorizations are granted based on a review of the data package, reliance on the
applicant’s statement of compliance, and an evaluation of the capability of the applicant
to produce the TSO equipment. FAA acceptance of TSO systems with embedded
software is based on a review of the TSO data package for compliance with RTCA DO-
178[] or other acceptable means, as well as the applicant’s statement of compliance that
the TSO article meets the performance specifications of the TSO. Once the TSO is
granted, the TC of the aircraft may need to be amended or supplemented to allow the
TSOA equipment to be installed on the aircraft. Granting a TSOA is, in and of itself, not
sufficient substantiation to amend a TC; installation substantiation is required also.

The TSOA process may begin with an initial familiarization meeting, a letter of intent or
application, where the applicant’s project schedule and plans are discussed. Applicants
should be encouraged to seek software expertise and FAA involvement early in the
project. The FAA can provide guidance on software compliance and certification
concerns. The applicant may want to discuss with the FAA such areas as: the
certification plans; especially the PSAC, the system safety assessment, human factors
issues, failure condition categories, software levels, software and hardware partitioning,
etc.

The SW-ASE evaluation begins after the submission of the completed TSO data package.
TSO requirements sometimes specify the data submittal requirements. If they don’t, the
applicant should submit the PSAC, SCI, and SWAS. The ACO SW-ASE may request
additional data be submitted. The evaluation consists of the following:

1. review of applicant’s statement of compliance;
2. review TSO data submittals, including software life cycle data; and
3. recommend approval or denial of deviations.

The manufacturing office will evaluate the QC manual for compliance with the
applicable CFR, policy, and verification of implementation compliance with the manual.

2.5.2 Evaluating Capability

As part of assessing the applicant’s capability to make statements of compliance, the
FAA must assess the company’s capability to produce software in compliance with the
appropriate software level of DO-178[]. The assessment may be accomplished through
an FAA software review conducted by a team. Once the FAA has determined the
applicant capable, the applicant may be deemed “capable” for that level of software.

2.5.3 Issuance of a TSOA

If the Software Team finds all submittals from the applicant acceptable, the TSOA is
issued. If the applicant’s request is denied, the reason for denial should be communicated
to the applicant. When acceptable corrections are made, the TSOA may be issued.
Deviations are evaluated by engineering and a recommendation to approve or deny, with
substantiating data, is provided to Headquarters (AIR-100) for concurrence. AIR-100

Typical Roles and Responsibilities of the Software Team (Version 2 – 1/22/01)

 C-8

will communicate approval or denial of the deviations to the local ACO who provides a
formal response to the applicant.

2.5.4 Roles and Responsibilities in the TSOA Process

Table 4 below describes roles and responsibilities of the SW-ASE in TSOA project
familiarization and evaluation.

TABLE 4 - Roles and Responsibilities for SW-ASE for Software Aspects of the
TSOA Project
• Review applicant statement of compliance and TSO data package submitted with

TSO application.
• Participate in familiarization meeting
•
• Determine software level of FAA involvement for TSO.
• Review software life cycle data of TSO data package.
• Assess software level acceptability.
• Request additional software data to be submitted as necessary to substantiate

compliance.
• Perform on-site or desk reviews, as necessary to substantiate compliance.
• Evaluate deviation requests, send recommendations to AIR-100, and forward

resolution to applicant.
• Resolve any discrepancies with the applicant.
• Send TSOA letter to applicant.

2.6 Roles and Responsibilities of SW-ASE’s in the Software Aspects of the

ACSEP Process

The production approval holder’s SQA and SCM processes and Quality Control system
are evaluated to the criteria found in Order 8100.7, “Aircraft Certification Systems
Evaluation Program (ACSEP).” Individuals assigned to review the software sub-system
might comprise of one or more SW-ASE’s and/or Aviation Safety Inspectors (ASI),
possibly flight test pilots. If more than one individual is participating in the review, than
one will be assigned the role of software team leader. Table 5 defines the roles and
responsibilities for the SW-ASE or ASE who is performing the software aspects of
ACSEP evaluations.

TABLE 5 - Roles and Responsibilities for Software Aspects of the ACSEP
Evaluation
• Examine the software quality process per the ACSEP order.
• Document findings and observations.
• Monitor corrective actions.

Typical Roles and Responsibilities of the Software Team (Version 2 – 1/22/01)

 C-9

2.7 Roles and Responsibilities for SW-ASE’s in the Software Aspects of the
Certificate Management Process

The Certificate Management process begins with the issuance of a new approval, a
scheduled visit, or information from manufacturing. Certificate Management for systems
with software (and the scheduled visits portion of certificate management) is an activity
for both engineering and manufacturing inspection. Certificate Management is an
ongoing process that applies to TC/ATC/STC, PC, TSOA, and PMA products.

Certificate Management of software systems should be proactive and may include:

• evaluation of the software development processes, if not previously reviewed

(TC/ATC/STC/TSOA);
• evaluation of the SCM change process (e.g., design change, change control,

baseline change, specification change notices, etc.);
• an evaluation of the SCM data retention and retrieval;
• verification that the software can be built, linked, and loaded into production units

using approved procedures;
• analysis of product service history, including problem reports, accident/incident

databases, Airworthiness Directives databases, System Deficiency Report
databases to aid in determining the quality of the original development subsequent
changes. This provides feedback to FAA manufacturing and engineering offices
for continuous improvement activities;

• an assurance that manufacturing, test, and inspection software is controlled in
compliance with the QA system and SCM; and

• Reevaluate SQA and SCM processes to ensure continued acceptability.

The above activities may result in a report of findings relevant to compliance with Order
2150.3A, “Compliance and Enforcement Program”, from the ACO or MIDO.

Table 6 defines the typical roles and responsibilities for the SW-ASE for the software
aspects of Certificate Management.

TABLE 6 – SW-ASE Roles and Responsibilities Certificate Management Process
• Review Service Difficulty Reports for software related trends.
• Approve Service Bulletins.
• Draft Airworthiness Directives.
• Discuss SQA and SCM deficiencies with applicant.
• Evaluate the software life cycle processes, if problems arise.

Typical Roles and Responsibilities of the Software Team (Version 2 – 1/22/01)

 C-10

2.8 Roles and Responsibilities for SW-ASE’s in the Software Aspects of the
Designee Management Process

Much of the software aspects of certification are delegated to the Designated Engineering
Representative (DER). The process of managing designees who perform software
functions needs to take into consideration the following:

(1) Designee qualification, selection, and orientation.
(2) Oversight of designee usage on projects.
(3) Oversight of designee approval and activities.
(4) Designee renewal and evaluation.
(5) Training of designees.

 Table 7 defines the roles and responsibilities for the Designee advisor and SW-ASE
to be performed for the software aspects of Designee Management.

TABLE 7 - Roles and Responsibilities of SW-ASE for Designee Management
• Evaluate designee qualifications to the criteria of the appropriate Order.
• Participate in training and mentoring activities to prepare the designees.
• Apply the designee appointment and renewal procedures required by FAA Orders.
• Evaluate level of designee activity.

Typical Roles and Responsibilities of the Software Team (Version 2 – 1/22/01)

 C-11

3.0 ROLES AND RESPONSIBILITIES FOR SOFTWARE NRS

The NRS provides professional technical guidance, advice and assistance within the FAA
and to the aviation industry. They are the FAA’s direct link to an extensive professional
network in the research and development community, professional and academic
organizations, private industry, other government and regulatory authorities, and national
and international experts in the field of software. The NRS operates in the role of
technical leader and certification Software Team advisor. The roles and responsibilities
of the NRS in both capacities are described below:

3.1 NRS Technical Leader Roles and Responsibilities:

• Consults on programs that are applying new technology.
• Initiates and serves on committees regarding standardization of new

technology areas.
• Addresses issues that require precedent setting approaches to policy and

means of compliance.
• Assists Directorate and Headquarters staffs in understanding technology and

related issues in order to develop rules and policy guidance.
• Educates Headquarters, Technical Specialists, Directorate Staff, SW-ASE’s,

SW-ASI’s and Designees regarding new technology compliance issues.
• Conducts research and development in the areas of specialty and

responsibilities.

3.2 NRS Certification Software Team Advisor Roles and Responsibilities:

• Attends familiarization meetings, when requested.
• Advise the Software Team on issues that require precedent setting

approaches to policy and means of compliance.
• Participates in Special Certification Reviews, Critical Design Reviews, and

Multiple Expert Opinion Software Teams.
• Participates in formal technical Software Team meetings.
• Provides timely response to Software Team for methods of compliance or

precedent-setting design features.
• Assists SW-ASE, SW-ASI, and applicant in understanding new technology

and related issues and identifying means of compliance.

Typical Roles and Responsibilities of the Software Team (Version 2 – 1/22/01)

 C-12

4.0 ROLES AND RESPONSIBILITIES FOR SOFTWARE TS

The TS provides technical expertise to the FAA in the area of software and acts as the
focal point for issues of software technology. The TS is responsible for being current on
the latest technologies, methods, and policies by working closely with the NRS,
Standards and MIO staff of the Directorates, and Headquarters. The TS operates in the
role of technical expert and certification Software Team member. The roles and
responsibilities of the TS in each of these capacities are described below:

4.1 TS Technical Expert Roles and Responsibilities:

• Assists ACO’s, MIDO’s, Directorate Staff, and Headquarters in establishing

policy and procedures regarding software issues.
• Participates in meetings with the NRS and industry.
• Mentoring and assists SW-ASE and SW-ASI on software issues.
• Provides an evaluation of the SQA subsystem when requested to participate

on an ACSEP review.
• Participates on industry Software Teams to establish standards and guidance.
• Provides expertise within discipline.

 4.2 TS Certification Software Team Member Roles and Responsibilities:

• Participates in projects involving new technology or new application of

technology.
• When requested by ACO, evaluates software life cycle processes during

certification projects.
• When requested by ACO, evaluates SCM and SQA processes for airborne

systems and manufacturing operations to assure post-certification
compliance.

• Identifies compliance issues.
• When requested by ACO, conducts software reviews and inspections.
• Provides technical recommendations to SW-ASE’s and SW-ASI’s.

Typical Roles and Responsibilities of the Software Team (Version 2 – 1/22/01)

 C-13

5.0 ROLES AND RESPONSIBILITIES FOR DIRECTORATE STAFF

The Directorate Staff consists of both the standards staff and the manufacturing
inspection office. The Directorate Staff provides part-specific and project-specific rules
and policy to the certification Software Team. They are also the focal point within the
Directorate for policy.

5.1 The Directorate Staff assumes these roles and responsibilities:

• Provides input to Headquarters to ensure national policy is consistent with
Directorate (Part 23, 25, 27, 29, 33, 35) policy.

• Participate in familiarization meetings for significant projects.
• Identifies and clarifies software policy for the ACO’s and MIDO’s.
• Assists the ACO’s and MIDO’s in formalizing their concerns with policy

implementation problems to Headquarters.
• Encourages and ensures standardized application of national policy and

regulations.
• Encourages the definition of design features and methods of compliance early in

the project.
• Represents the Directorate at technical forums and meetings that involve

software.
• Assists Headquarters in the development of regulations and national policy.
• Recommends issues requiring national policy to Headquarters.
• Participates in software reviews, as requested.
• Provides software process evaluation expertise as project Software Team member.
• Works with the NRS and TS on national software issues.
• Serves as technical expert, as requested.

Typical Roles and Responsibilities of the Software Team (Version 2 – 1/22/01)

 C-14

6.0 ROLES AND RESPONSIBILITIES FOR HEADQUARTERS STAFF.

The Headquarters staff assumes the following roles and responsibilities for software
aspects of certification:

• Serves as focal point working with Directorate Staff, NRS, TS, ACO’s and

MIDO’s to ensure policy and guidance standardization among all Directorates.
• Develops new policy, guidance, and regulations based on input from NRS, TS,

Directorate Staff, ACO’s, MIDO’s, and Industry.
• Interprets and explains policy and guidance to the Directorate Staff, ACO’s and

MIDO’s
• Serves as liaison among different FAA communities.
• Participates in projects that require changes or additions to national software

policy.
• Develops national training programs to promote standardization throughout AIR.
• Sponsors national software standardization conferences.
• Manages Research and Development programs involving software.
• Promotes international harmonization.
• Serves as the federal representative on national software committees.
• Works closely with Headquarters management Software Teams.
• Serves as technical expert during a software review, as requested.

Excerpts from FAA Notice 8110.87
(Level of FAA Involvement in Software

Projects)

Appendix D

D-1

DO-178B Software Level Level of FAA Involvement

D LOW

C LOW or MEDIUM

B MEDIUM or HIGH

A MEDIUM or HIGH

Table 1. Software Level Criteria

D-2

 CRITERIA Scale MIN. MAX. Score
1. Applicant/Developer Software Certification

Experience

1.1 Experience with civil aircraft and systems certification. Scale: 0 5 10
projects: 0 3-5 6+

1.2 Experience with DO-178B. Scale: 0 5 10
projects: 0 2-4 5+

1.3 Experience with DO-178 or DO-178A. Scale: 0 3 5
projects: 0 4-6 7+

1.4 Experience with other software standards (other than
DO-178 [])

Scale: 0 2 4
projects: 0 4-6 7+

2. Applicant/Developer Demonstrated Software
Development Capability

2.1 Ability to consistently produce DO-178B software
products.

Scale: 0 5 10
Ability: Low Med High

2.2 Cooperation, openness and resource commitments Scale: 0 5 10
Ability: Low Med High

2.3 Ability to manage software development and sub-
contractors

Scale: 0 5 10
Ability: Low Med High

2.4 Capability assessments (e.g., SEI CMM, ISO 9001-3,
IEC)

Scale: 0 2 4
Ability: Low Med High

2.5 Development team average relevent experience Scale: 0 5 10
Ability: < 2 yrs 2-4 yrs > 4 yrs

3. Applicant/Developer Software Service History
3.1 Incidents of software-related problems.

(as a percentage of affected products)
Scale: 0 5 10
Incidents: > 25% > 10% None

3.2 Company management and support of designees Scale: 0 5 10
Quality: Low Med High

3.3 Company software quality assurance organization and
configuration management process

Scale: 0 5 10
Quality: Low Med High

3.4 Company stability and commitment Scale: 0 3 6
Stability: Low Med High

3.5 Success of past company certification efforts Scale: 0 3 6
Success: None >50% All

4. The Current System and Software Application
4.1 Complexity of the system architecture, functions and

interfaces
Scale: 0 5 10
Complex: High Med Low

4.2 Complexity & size of the software and safety features Scale: 0 5 10
Complex: High Med Low

4.3 Novelty of design and use of new technology Scale: 0 5 10
Newness: Much Some None

4.4 Software development and verification environment Scale: 0 3 6
Environ: None Older Modern

4.5 Use of alternative methods or additional considerations Scale: 0 3 6
Standard: Much Little None

Table 2. Other Relevant Criteria

D-3

5. Designee Capabilities
5.1 Experience of designees with DO-178B. Scale: 0 5 10

Projects: <5 5-10 >10

5.2 Designee authority, autonomy and independence. Scale: 0 5 10
Autonomy: None Self-starter
Outgoing

5.3 Designee cooperation, openness and issue resolution
effectiveness.

Scale: 0 5 10
Effectiveness: Responsive Cooperative
Outgoing

5.4 Relatedness of assigned designee’s experience. Scale: 0 5 10
Related: None Somewhat Exact

5.5 Designees workload on project and other projects. Scale: 0 5 10
Projects: <5 5-10 >10

5.6 Experience of designees with other software standards
(other than DO-178[]).

Scale: 0 3 5
Projects: <5 5-10 >10

Total Score Result (TSR): ________

Table 2. Other Relevant Criteria (Continued)

D-4

Total Score Result (TSR)

(from Table 1)
Software Level

A
Software Level

B
Software Level

C
Software Level

D
TSR < 80 HIGH HIGH MEDIUM LOW

80 < TSR < 130 HIGH MEDIUM MEDIUM LOW
130 < TSR MEDIUM MEDIUM LOW LOW

Table 3. Level of Involvement Determination

D-5

TABLE 4. TYPICAL PROGRAM DECISIONS BASED ON LOFI OUTCOME

Level of FAA Involvement Typical Program Decisions

HIGH
! Minimal delegation to designees (i.e., Designee may recommend

approval of some data and approve other type design data).
! NRS, Technical Specialist (TS), Directorate staff, and/or

Headquarters (HQ) staff involvement is likely.
! FAA involvement throughout the software life cycle, including

mentoring, on-site reviews and desk reviews (recommend no less
than 2 on-site reviews).

! Submittal of all plans: Plan for Software Aspects of Certification
(PSAC), Software Development Plan (SDP), Software
Verification Plan (SVP), Software Configuration Management
Plan (SCMP), and Software Quality Assurance Plan (SQAP).

! Submittal of Software Accomplishment Summary (SAS),
Software Configuration Index (SCI) and Verification Results.

! Submittal of DO-178B Objectives Compliance Matrix (reference
FAA Job Aid, “Conducting Software Reviews Prior to
Certification,” dated June 1998), which may be submitted as
part of the SAS.

MEDIUM

! Moderate delegation to designees (i.e., Designee may recommend
approval of PSAC and SAS; Designee may approve SCI; and
Designee may approve SVP, SDP, SQAP, SCMP, and other
data).

! Involvement at least initially (planning, regulation and policy
interpretation, some mentoring) and toward the end of the project
(final compliance).

! NRS, TS, Directorate staff, or Headquarters staff involvement
may be needed.

! Conduct at least 1 on-site review but mostly desk reviews of data.
! Require submittal of PSAC, SCI, SAS.
! May request submittal of SVP, SQAP, SCMP, and SDP.

LOW

! Maximum delegation to designees (i.e., Designee may
recommend approval of PSAC and designee may approve all
other data/documents.)

! Minimal FAA involvement (e.g., no on-site reviews, little or no
desk reviews).

! Rarely need NRS, TS, Directorate staff, or HQ staff involvement.
! Submittal of PSAC, SCI, and SAS.

NOTE: Table 4 is only an example of High, Medium, and Low decisions. Each program will have slightly
different needs.

D-6

APPENDIX 1. LEVEL OF FAA INVOLVEMENT (LOFI) WORKSHEET

Applicant: ________________________________ Project Name/Number: ________________________
ACO Engineer: ____________________________ System Type: ________________________________
MIDO/MISO Inspector: _____________________ Software Level: ______________________________
DER Name: _______________________________ Date of Assessment: ___________________________
TSR (from Table 2): ________________________ Other Info: __________________________________
Resulting LOFI: __________________________ Policy Issues: ________________________________

Plan Based on LOFI Assessment: (e.g., number of FAA on-site reviews, number of
FAA desk reviews, data to be submitted to the FAA, delegation to DERs, etc.)

Mid-Project Corrections: (based on project improvements or problems)

Actual Project Results: (e.g., number of FAA on-site reviews, number of FAA desk
reviews, data submitted to the FAA, delegation to DERs, etc.)

Excerpts From Software Review Job Aid

Appendix E

1010011101010011110001101001101101101101000100110010101011100010110

0110100110110110110100010010001010101110001011000100111010100111100

1110100110110110110100010010001010101110001011000100111010100111100

0110100110110110110100010011001010101110001011000100111010100111101

0010110001001110101001111000110100110110110110100010010001010101110

1010110001001110101001111000110100110110110110101010010001010101110

0010110001001110101001111000110100110110110110100010010001010101111

0010110001001110101001111000110100110110110110100010010001010101110
1010011101010011110001101001101101101101000100100010101011100010110

0010011101010011110001101001101101101101010100101110101011100010111

1010011101010011110001101001101101101101000100101110101011100010111

1110011101010011110001101001101101101101000100100010101011100010111

0010011101010011110001101001101101101101000100100010101011100010110

0110100110110110110100010010001010101110001011000100111010100111100
0010110001001110101001111000110100110110110110100010010001010101110

1010110001001110101001111000110100110110110110101010010001010101110

0010110001001110101001111000110100110110110110100010010001010101110
1010011101010011110001101001101101101101000100100010101011100010110

1010011101010011110001101001101101101101000100101110101011100010111

1110011101010011110001101001101101101101000100100010101011100010111

1010011101010011110001101001101101101101000100110010101011100010110

0110100110110110110100010010001010101110001011000100111010100111100

1110100110110110110100010010001010101110001011000100111010100111100

0110100110110110110100010011001010101110001011000100111010100111101

0010110001001110101001111000110100110110110110100010010001010101110

1010110001001110101001111000110100110110110110101010010001010101110

0010110001001110101001111000110100110110110110100010010001010101111

0010110001001110101001111000110100110110110110100010010001010101110
1010011101010011110001101001101101101101000100100010101011100010110

0010011101010011110001101001101101101101010100101110101011100010111

1010011101010011110001101001101101101101000100101110101011100010111

1110011101010011110001101001101101101101000100100010101011100010111

0010011101010011110001101001101101101101000100100010101011100010110

1010011101010011110001101001101101101101000100110010101011100010110

0110100110110110110100010010001010101110001011000100111010100111100

1110100110110110110100010010001010101110001011000100111010100111100

0110100110110110110100010011001010101110001011000100111010100111101

0010110001001110101001111000110100110110110110100010010001010101110

1010110001001110101001111000110100110110110110101010010001010101110

0010110001001110101001111000110100110110110110100010010001010101111

0010110001001110101001111000110100110110110110100010010001010101110
1010011101010011110001101001101101101101000100100010101011100010110

0010011101010011110001101001101101101101010100101110101011100010111

1010011101010011110001101001101101101101000100101110101011100010111

1110011101010011110001101001101101101101000100100010101011100010111

0010011101010011110001101001101101101101000100100010101011100010110

1010011101010011110001101001101101101101000100110010101011100010110

0110100110110110110100010010001010101110001011000100111010100111100

1110100110110110110100010010001010101110001011000100111010100111100

0110100110110110110100010011001010101110001011000100111010100111101

0010110001001110101001111000110100110110110110100010010001010101110

1010110001001110101001111000110100110110110110101010010001010101110

0010110001001110101001111000110100110110110110100010010001010101111

0010110001001110101001111000110100110110110110100010010001010101110
1010011101010011110001101001101101101101000100100010101011100010110

0010011101010011110001101001101101101101010100101110101011100010111

1010011101010011110001101001101101101101000100101110101011100010111

1110011101010011110001101001101101101101000100100010101011100010111

0010011101010011110001101001101101101101000100100010101011100010110

June 1998

AIRCRAFT CERTIFICATION SERVICE

E-1

JOB AID –TABLE OF CONTENTS
Page #

Job Aid Layout.. ii
Acronyms .. iii
I. Introduction ..I-1

Purpose.. I-1
Organization.. I-3
Stakeholders in the Software Review Process .. I-3

II. Overview of the Software Review Process.. II-1
Review Types...II-1
Stages of Involvement ...II-2

III. Getting Started ...III-1
Determining Level of Involvement .. III-1
Overview of Common Tasks .. III-1
Teaming of Engineers and Inspectors .. III-2

IV. Tasks Involved in the Software Review ...IV-1
Overview.. IV-1
Task 1: Preparing for the Software Review... IV-2
Task 2: Performing the Software Review and

Documenting Findings and Observations .. IV-5
Task 3: Preparing and Conducting Exit Briefing... IV-8
Task 4: Conducting Follow-Up Activities... IV-10

V. Activities for Stages of Involvement.. V-1
Planning .. V-2
Development Process.. V-11
Verification/Test ... V-23
Final Review ... V-30

APPENDICES
Appendix A - Sample Notification Letter and Meeting Agendas... A-1
Appendix B - Summary of Compliance Findings/Observations..B-1
Appendix C - Sample Software Review Transmittal Letter and Report................................C-1

TABLES
Table 1. Stakeholders in the Software Review Process ... I-4
Table 2. On-Site/Desk-Top Review Summary ...II-1
Table 3. Delegation of Software Reviews ..II-2
Table 4. Summary of DO-178B Tables ..II-2
Table 5. Overview of Stages of Involvement..II-4

AIRCRAFT CERTIFICATION SERVICE

E-2

When Conducting a
Software Review . . .

Job Aid Layout

Determine
Need for
Software
Review

Prepare for
Software
Review

Perform
Software
Review

Conduct Exit
Briefing

Conduct
Follow-Up
Activities

Assess
Results of
Software
Review

Software Review

Refer to this Section
of the Job Aid . . .

Section, II,
Overview of
the Software

Review
Process

&
Section III,

Getting
Started

Section IV,
Task 1

Section IV,
Task 2

Section V,
Activities for

Stages of
Involvement

Section IV,
Task 3

Section IV,
Task 4

Feedback

AIRCRAFT CERTIFICATION SERVICE

E-3

JOB AID
STAGE OF INVOLVEMENT #1 – ACTIVITIES/QUESTIONS

Item # Evaluation Activity/Question ASE-SW/

ASI-SW
DO-178B
objective

Reviewed? (!!!!)
Issue? (!!!!*)

1.1 Review all plans (PSAC, SCMP, SQAP,
SDP, SVP, software tool plans, etc.).
Based on your review of all the plans,
consider the following questions:

1.1.1 Has the planning data been signed and put
under CM? Verify there is objective
evidence of coordination (e.g., authorized
signatures) from all organizations
controlled and affected by the software
plan.

*ASI-SW/
ASE-SW

A-1, #1-7

1.1.2 Are plans and standards cited complete,
clear, and consistent?

*ASE-SW/
ASI-SW

A-1, #1,7

1.1.3 Do the plans state procedures for
implementing software changes?
• Are any criteria established for

minor/major changes?
• If the project is a change to existing

software, is it a minor or major
change?

• If major, has the applicant outlined a
procedure for change impact analysis?

• Does the SVP address testing in event
of major change?

• Do company procedures allow for
regression testing analysis?

*ASE-SW/
ASI-SW

A-1, #1,2

1.1.4 Are the inputs, outputs, and data flows
specified for each process?

*ASE-SW/
ASI-SW

A-1, #1

1.1.5 Are the development and verification life
cycle activities defined in sufficient detail
(reference DO-178B sections 11.1-11.3) to
satisfy section 4.2.

*ASE-SW/
ASI-SW

A-1, #1-7

AIRCRAFT CERTIFICATION SERVICE

E-4

Item # Evaluation Activity/Question ASE-SW/
ASI-SW

DO-178B
objective

Reviewed? (!!!!)
Issue? (!!!!*)

1.1.6 Do the plans meet the DO-178B planning
objectives in Table A-1? (i.e., Is each plan
internally consistent? Are the plans
consistent with each other? Is the software
life cycle defined? Are the transition
criteria defined?)

*ASE-SW/
ASI-SW

A-1, #7

1.1.7 If the plans are followed, would this assure
that all DO-178B objectives in Tables A-2
through A-10 are met? (Consider each
178B objective after your comprehensive
reading of the plans.)

*ASE-SW/
ASI-SW

A-2 to A-10

(all
objectives)

1.2 Determine if additional considerations
defined in Section 12 of DO-178B have
been documented and addressed in the
plans. Consider the following questions:

1.2.1 Does the use of tools result in the
elimination, reduction, or automation of
processes found in DO-178B? Verify that
any software tools that are required are
identified and that how the tools are to be
used is documented.

ASE-SW A-1, #3

1.2.2 Are tools supported with a tool
qualification plan? Verify that tools are
properly categorized into development,
configuration management, or verification
tools. Verify that the plan for qualification
of tools is documented and adequate for
the specified tool use.

Note 1: Development tools can introduce
an error and should follow the criteria of
DO-178B, Paragraph 12.2.1. This data
should be reviewed unless previously
qualified, have not undergone change, and
are being applied in the same manner.

Note 2: Verification tools can fail to detect
errors and are required to meet the
operational/function requirements as
described in DO-178B, paragraph 12.2.3.2.
This data should be reviewed unless
previously qualified, have not undergone
change, and are being applied.

ASE-SW A-1, #3

AIRCRAFT CERTIFICATION SERVICE

E-5

Item # Evaluation Activity/Question ASE-SW/
ASI-SW

DO-178B
objective

Reviewed? (!!!!)
Issue? (!!!!*)

1.2.3 Are such items as previously developed
software, COTS, user-modifiable software,
field-loadable software, option-selectable
software, multiple-version dissimilar
software, product service history,
alternative methods of compliance, etc.
adequately addressed in the plans?

*ASE-SW/
ASI-SW

A-1, #4

(Section 2.3,
2.4, 2.5, and
12)

1.2.4 Have any issues regarding modification to
legacy systems or reuse of legacy software
been addressed in the plans? (Reference
notice for use of DO-178B for legacy
systems.)

ASE-SW A-1, #4

1.2.5 Has a NRS, Directorate, and/or
Headquarters personnel reviewed unique
additional considerations (if required)?

ASE-SW n/a

1.2.6 Are issue papers or national policy
required for any of the additional
considerations?

ASE-SW n/a

1.2.7 Have all non-US certification issues been
addressed (if appropriate)?

ASE-SW A-1, #4

1.3 Review PSAC and consider the
following questions:

1.3.1 Does the PSAC adequately address the
proposed contents described in DO-178B,
Section 11.1. If not, are the contents
included in another plan?

*ASE-SW/
ASI-SW

A-1, #1-7

A-10, #2

1.3.2 Is a process in place to address changes
that may occur throughout the
development process? (This could include
revision of PSAC, submittal of a letter
summarizing the change and requesting
FAA concurrence, etc.)

ASE-SW A-1, #1,2

1.3.3 Does the safety assessment adequately
support the software level proposed in the
PSAC?

If the software level is lower than what the
safety assessment suggests, is there
adequate justification (e.g., through system
architecture, partitioning)?

ASE-SW A-1, #1-4

1.4 Review SDP and consider the following
questions:

AIRCRAFT CERTIFICATION SERVICE

E-6

Item # Evaluation Activity/Question ASE-SW/
ASI-SW

DO-178B
objective

Reviewed? (!!!!)
Issue? (!!!!*)

1.4.1 If the SDP is followed, will the DO-178B
objectives defined in Table A-2 be met.

ASE-SW A-2, #1-7

1.4.2 Does the SDP adequately address the
proposed contents described in DO-178B,
Section 11.2? If not, are the contents
included in another plan?

ASE-SW A-1, #1-4

1.4.3 Has the software development
environment been adequately defined (e.g.,
compiler options, developmental tools)?

ASE-SW A-1, #3

1.4.4 Have the compiler options been identified?
(Note: Changes to compiler options may
invalidate previous tests and coverage
analysis.)

ASE-SW A-1, #3

1.4.5 Is the programming language and
operating system specified and will they
meet the objectives of DO-178B? (Note:
Some language and operating system
choices may produce non-deterministic
results and therefore may not meet the
objectives of DO-178B.)

ASE-SW A-1, #3

1.5 Review the SCM plan and consider the
following questions:

1.5.1 If the SCM plan is followed, will the DO-
178B objectives defined in Table A-8 be
met?

ASI-SW A-8, #1-6

1.5.2 Are the CM processes described in Section
7.0 of DO-178B in sufficient detail (ref
178B Sections 11.4) to satisfy Section 4.2?

*ASI-SW/
ASE-SW

A-8, #1-6

1.5.3 Does the SCM plan adequately address the
proposed contents described in DO-178B,
Section 11.4? If not, are the contents
included in another plan?

*ASI-SW/
ASE-SW

A-8, #1-6

AIRCRAFT CERTIFICATION SERVICE

E-7

Item # Evaluation Activity/Question ASE-SW/
ASI-SW

DO-178B
objective

Reviewed? (!!!!)
Issue? (!!!!*)

1.5.4 Does the SCM plan provide for the
following items?

• Configuration identification of
software life cycle data.

• Baselining of all configuration control
1 (CC1) data.

• Problem reporting, change control, and
configuration status accounting.

• Archival, retrieval, and release.

• Data retention provisions supporting
airworthiness requirements.

• Software load control and part
numbering to include any additional
considerations required for electronic
part numbering.

• Configuration management of the
software life cycle development
environment includes tools.

• All DO-178B life cycle data to be
maintained consistently with the
configuration control category
associated with the software level.

ASI-SW A-8, #1-6

1.6 Review the SQA plan and consider the
following questions:

1.6.1 If the SQA plan is followed, will the DO-
178B objectives defined in Table A-9 be
met?

*ASI-SW/
ASE-SW

A-9, #1

1.6.2 Are the QA integral processes described in
Section 8.0 of DO-178B in sufficient detail
(ref 178B Section 11.5) to satisfy Section
4.2?

ASI-SW A1, #1

1.6.3 Does the SQA plan adequately address the
proposed contents described in DO-178B,
Section 11.5? If not, are the contents
included in another plan?

*ASI-SW/
ASE-SW

A-1, #1

1.6.4 Are the transition criteria,
interrelationships and sequences among
process properly and adequately defined?

*ASE-SW/
ASI-SW

A-1, #2;
A-9, #2

AIRCRAFT CERTIFICATION SERVICE

E-8

Item # Evaluation Activity/Question ASE-SW/
ASI-SW

DO-178B
objective

Reviewed? (!!!!)
Issue? (!!!!*)

1.6.5 Has an accountable person/organization
been identified for each documented
process and activity?

*ASI-SW/
ASE-SW

A-1, #1

1.7 Review the SVP and consider the
following questions:

1.7.1 If SVP is followed, will objectives of A-3,
A-4, A-5, A-6, and A-7 be met?

ASE-SW A-3 to A-7

(all
objectives)

1.7.2 Does the SVP adequately address the
proposed contents described in DO-178B,
Section 11.3? If not, are the contents
included in another plan?

*ASE-SW/
ASI-SW

A-1, #1-3

1.7.3 Does the SVP describe how independence
will be achieved, when required?

*ASE-SW/
ASI-SW

A-3 to A-7

(all
objectives)

1.7.4 Does the SVP describe the verification
method used for each software verification
activity?

*ASE-SW/
ASI-SW

A-1, #1-3

1.7.5 Does the SVP describe the verification
environment, including the test
equipment?

Are there any automated tools?

Is there any overlap between various kinds
of testing (e.g., overlap of structural and
requirements-based tests)?

Is the division of the testing task between
suppliers and sub-contract suppliers
adequately addressed and controlled?

*ASE-SW/
ASI-SW

A-1, #1-3

1.7.6 Does the SVP describe methods for test
case selection?

*ASE-SW/
ASI-SW

A-1, #1-3

1.8 Develop an understanding of the system
from applicant’s plans, safety
assessment, standards, and briefings.

1.8.1 Does the safety assessment support the
software level for every software
component, as proposed in the plans?

ASE-SW

A-1, #1

AIRCRAFT CERTIFICATION SERVICE

E-9

Item # Evaluation Activity/Question ASE-SW/
ASI-SW

DO-178B
objective

Reviewed? (!!!!)
Issue? (!!!!*)

1.9 Review the software development
standards and consider the following
questions:

1.9.1 Have standards been verified for each
defined software life cycle process? Are
the standards adequate to support the
software level?

ASE-SW A-1, #5

1.9.2 Have standards been verified to ensure
compliance to Section 11?

ASE-SW A-1, #5

1.9.3 Have standards been verified to ensure it
does not permit any constructs which
would invalidate the assumptions about the
safety levels (e.g., unconstrained
recursion, non-determinism)?

ASE-SW A-1, #5

AIRCRAFT CERTIFICATION SERVICE

E-10

EXAMPLE COMPLIANCE TABLES FROM JOB AID

Anx Objective

Software Planning: Summary of Compliance
Findings/Observations—Level ___

(Date:_______)

Applicable
Level

Job
Aid

Ref Summary
(Numbers are DO-178B

Applicant:
Project #:

 Ref

section references) System:
1-1 Software development

and integral processes
activities are defined. 4.1
a, 4.3

 A/B/C/D 1.1, 1.3, 1.4,
1.6, 1.7, 1.8

1-2 Transition criteria, inter-
relationships and
sequencing among
processes are defined.
4.1b, 4.3

 A/B/C 1.1, 1.3, 1.4,
1.6, 1.7

1-3 Software life cycle
environment is defined.
4.1c

 A/B/C 1.1, 1.2, 1.3,
1.4, 1.7

1-4 Additional considerations
are addressed. 4.1d

 A/B/C/D 1.1, 1.2, 1.3,
1.4, 2.4

1-5 Software development
standards are defined.
4.1e

 A/B/C 1.1, 1.3, 1.9

1-6 Software plans comply
with this document. 4.1f,
4.6

 A/B/C 1.1, 1.3

1-7 Software plans are
coordinated. 4.1g, 4.6

 A/B/C 1.1, 1.3

AIRCRAFT CERTIFICATION SERVICE

E-11

Anx Objective Software Development: Summary of Compliance
Findings/Observations—Level ___

(Date:_______)

Applicable Job

Ref Summary
(Numbers are DO-178B

Applicant:
Project #:

 Ref

section references) System:
2-1 High-level requirements

are developed. 5.1.1a
 A/B/C/D 1.5

2-2 Derived high-level
requirements are defined.
5.1.1b

 A/B/C/D 1.5, 2.1

2-3 Software architecture is
developed. 5.2.1a

 A/B/C/D 1.5

2-4 Low-level requirements
are developed. 5.2.1a

 A/B/C/D 1.5

2-5 Derived low-level
requirements are defined.
5.2.1b

 A/B/C/D 1.5

2-6 Source Code is
developed. 5.3.1a

 A/B/C/D 1.5

2-7 Executable Object Code
is produced and
integrated in the target
computer. 5.4.1a

 A/B/C/D 1.5

AIRCRAFT CERTIFICATION SERVICE

E-12

Anx Objective Verification of Outputs of Software
Requirements Process: Summary of Compliance

Findings/Observations—Level ___
(Date:_______)

Applicable Job

Ref Summary
(Numbers are DO-178B

Applicant:
Project #:

 Ref

section references) System:
3-1 Software high-level

requirements comply with
system requirements.
6.3.1a

 A/B/C/D 2.1

3-2 High-level requirements
are accurate and
consistent. 6.3.1b

 A/B/C/D 2.1

3-3 High-level requirements
are compatible with target
computer. 6.3.1c

 A/B 2.3

3-4 High-level requirements
are verifiable. 6.3.1d

 A/B/C 2.1

3-5 High-level requirements
conform to standards.
6.3.1e

 A/B/C 2.1

3-6 High-level requirements
are traceable to system
requirements. 6.3.1f

 A/B/C/D 2.1

3-7 Algorithms are accurate.
6.3.1g

 A/B/C 2.1

AIRCRAFT CERTIFICATION SERVICE

E-13

Anx Objective Verification of Outputs of Software Design
Process: Summary of Compliance
Findings/Observations—Level ___

(Date:_______)

Applicable Job

Ref Summary
(Numbers are DO-178B

Applicant:
Project #:

 Ref

section references) System:
4-1 Low-level requirements

comply with high-level
requirements. 6.3.2a

 A/B/C 2.1

4-2 Low-level requirements
are accurate and
consistent. 6.3.2b

 A/B/C 2.1, 2.2

4-3 Low-level requirements
are compatible with target
computer. 6.3.2c

 A/B 2.1

4-4 Low-level requirements
are verifiable. 6.3.2d

 A/B 2.1, 2.2

4-5 Low-level requirements
conform to standards.
6.3.2e

 A/B/C 2.1, 2.2

4-6 Low-level requirements
are traceable to high-level
requirements. 6.3.2f

 A/B/C 2.1, 2.2

4-7 Algorithms are accurate.
6.3.2g

 A/B/C 2.1, 2.2

4-8 Software architecture is
compatible with high-
level requirements.
6.3.3a

 A/B/C 2.1, 2.3

4-9 Software architecture is
consistent. 6.3.3b

 A/B/C 2.1, 2.3

4-10 Software architecture is
compatible with target
computer. 6.2.3c

 A/B 2.1, 2.2, 2.3

4-11 Software architecture is
verifiable. 6.3.3d

 A/B 2.1, 2.3

4-12 Software architecture
conforms to standards.
6.3.3e

 A/B/C 2.1, 2.2, 2.3

4-13 Software partitioning
integrity is confirmed.
6.3.3f

 A/B/C/D 2.1, 2.3

AIRCRAFT CERTIFICATION SERVICE

E-14

Anx Objective

Verification of Outputs of Software Coding &
Integration Process: Summary of Compliance

Findings/Observations—Level ___
(Date:_______)

Applicable
Level

Job
Aid

Ref Summary
(Numbers are DO-178B

Applicant:
Project #:

 Ref

section references) System:
5-1 Source Code complies

with low-level
requirements. 6.3.4a

 A/B/C 2.4

5-2 Source Code complies
with software
architecture. 6.3.4b

 A/B/C 2.4

5-3 Source Code is verifiable.
6.3.4c

 A/B 2.4

5-4 Source Code conforms to
standards. 6.3.4d

 A/B/C 2.4

5-5 Source Code is traceable
to low-level requirements.
6.3.4e

 A/B/C 2.4

5-6 Source Code is accurate
and consistent. 6.3.4f

 A/B/C 2.4

5-7 Output of software
integration process is
complete and correct.
6.3.5

 A/B/C 2.5

AIRCRAFT CERTIFICATION SERVICE

E-15

Anx Objective

Testing of Outputs of Integration Process:
Summary of Compliance

Findings/Observations—Level ___
(Date:_______)

Applicable
Level

Job
Aid

Ref Summary
(Numbers are DO-178B

Applicant:
Project #:

 Ref

section references) System:
6-1 Executable Object Code

complies with high-level
requirements. 6.4.2.1,
6.4.3

 A/B/C/D 2.5

6-2 Executable Object Code
is robust with high-level
requirements. 6.4.2.2,
6.4.3

 A/B/C/D 2.5

6-3 Executable Object Code
complies with low-level
requirements. 6.4.2.1,
6.4.3

 A/B/C 2.5

6-4 Executable Object Code
is robust with low-level
requirements. 6.4.2.2,
6.4.3

 A/B/C 2.5

6-5 Executable Object Code
is compatible with target
computer. 6.4.3a

 A/B/C/D 2.5

AIRCRAFT CERTIFICATION SERVICE

E-16

Anx Objective Verification of Verification Process Results:
Summary of Compliance

Findings/Observations—Level ___
(Date:_______)

Applicable Job

Ref Summary
(Numbers are DO-178B

Applicant:
Project #:

 Ref

section references) System:
7-1 Test procedures are

correct. 6,3,6b
 A/B/C 2.10, 3.2,

3.3
7-2 Test results are correct

and discrepancies
explained. 6.3.6c

 A/B/C 2.10, 3.3

7-3 Test coverage of high-
level requirements is
achieved. 6.4.4.1

 A/B/C/D 2.10, 3.1,
3.2, 3.3

7-4 Test coverage of low-
level requirements is
achieved. 6.4.4.2

 A/B/C 2.10, 3.2,
3.3

7-5 Test coverage of software
structure (modified
condition/decision) is
achieved. 6.4.4.2

 A 2.10, 3.2,
3.3

7-6 Test coverage of software
structure (decision
coverage) is achieved.
6.4.4.2a, 6.4.4.2b

 A/B 2.10, 3.2,
3.3

7-7 Test coverage of software
structure (statement
coverage) is achieved.
6.4.4.2a, 6.4.4.2b

 A/B/C 2.10, 3.2,
3.3

7-8 Test coverage of software
structure (data coupling
and control coupling) is
achieved. 6.4.4.2c

 A/B/C 2.10, 3.2,
3.3

AIRCRAFT CERTIFICATION SERVICE

E-17

Anx Objective Software Configuration Management Process:
Summary of Compliance

Findings/Observations—Level ___
(Date:_______)

Applicable Job

Ref Summary
(Numbers are DO-178B

Applicant:
Project #:

 Ref

section references) System:
8-1 Configuration items are

identified. 7.2.1
 A/B/C/D 1.5, 2.6, 3.4

8-2 Baselines and traceability
are established. 7.2.2

 A/B/C/D 1.5, 2.6, 3.4

8-3 Problem reporting,
change control,
change review, and
configuration status
accounting are
established. 7.2.3, 7.2.4,
7.2.5, 7.2.6

 A/B/C/D 1.5, 2.4, 2.7,
3.5

8-4 Archive, retrieval, and
release are established.
7.2.7

 A/B/C/D 1.5, 2.8, 3.6

8-5 Software load control is
established. 7.2.8

 A/B/C/D 1.5, 3.8

8-6 Software life cycle
environment control is
established. 7.2.9

 A/B/C/D 1.5, 3.2

AIRCRAFT CERTIFICATION SERVICE

E-18

Anx Objective Software Quality Assurance Process:
Summary of Compliance

Findings/Observations—Level ___
(Date:_______)

Applicable Job

Ref Summary
(Numbers are DO-178B

Applicant:
Project #:

 Ref

section references) System:
9-1 Assurance is obtained that

software development and
integral processes comply
with approved software
plans and standards. 8.1a

 A/B/C/D 1.6, 2.1, 2.2,
2.9, 3.7

9-2 Assurance is obtained that
transition criteria for the
software life cycle
processes are satisfied.
8.1b

 A/B 1.6, 2.9, 3.2

9-3 Software conformity
review is conducted.
8.1c, 8.3

 A/B/C/D 2.9

AIRCRAFT CERTIFICATION SERVICE

E-19

Anx Objective Certification Liaison Process:
Summary of Compliance

Findings/Observations—Level ___
(Date:_______)

Applicable Job

Ref Summary
(Numbers are DO-178B

Applicant:
Project #:

 Ref

section references) System:
10-1 Communication and

understanding between
the applicant and the
certification authority is
established. 9.0

 A/B/C/D 1.1 - 1.9

10-2 The means of compliance
is proposed and
agreement with the Plan
for Software Aspects of
Certification is obtained.
9.1

 A/B/C/D 1.3

10-3 Compliance
substantiation is
provided. 9.2

 A/B/C/D 4.1-4.8

DO-178B Planning Information

Appendix F

F-1

11.1 Plan for Software Aspects of Certification

The Plan for Software Aspects of Certification is the primary means used by the
certification authority for determining whether an applicant is proposing a software life
cycle that is commensurate with the rigor required for the level of software being
developed. This plan should include:

a. System overview: This section provides an overview of the system, including a
description of its functions and their allocation to the hardware and software, the
architecture, processor(s) used, hardware/software interfaces, and safety features.

b. Software overview: This section briefly describes the software functions with
emphasis on the proposed safety and partitioning concepts, for example, resource
sharing, redundancy, multiple-version dissimilar software, fault tolerance, and
timing and scheduling strategies.

c. Certification considerations: This section provides a summary of the certification
basis, including the means of compliance, as relating to the software aspects of
certification. This section also states the proposed software level(s) and
summarizes the justification provided by the system safety assessment process,
including potential software contributions to failure conditions.

d. Software life cycle: This section defines the software life cycle to be used and
includes a summary of each software life cycle and its processes for which detailed
information is defined in their respective software plans. The summary explains
how the objectives of each software life cycle process will be satisfied, and
specifies the organizations to be involved, the organizational responsibilities, and
the system life cycle processes and certification liaison process responsibilities.

e. Software life cycle data: This section specifies the software life cycle data that
will be produced and controlled by the software life cycle processes. This section
also describes the relationship of the data to each other or to other data defining the
system, the software life cycle data to be submitted to the certification authority,
the form of the data, and the means by which software life cycle data will be made
available to the certification authority.

f. Schedule: This section describes the means the applicant will use to provide the
certification authority with visibility of the activities of the software life cycle
processes so reviews can be planned.

g. Additional considerations: This section describes specific features that may affect
the certification process, for example, alternative methods of compliance, tool
qualification, previously developed software, option-selectable software, user-
modifiable software, COTS software, field-loadable software, multiple-version
dissimilar software, and product service history.

11.2 Software Development Plan

The Software Development Plan includes the objectives, standards and software life
cycle(s) to be used in the software development processes. It may be included in the Plan
for Software Aspects of Certification. This plan should include:

a. Standards: Identification of the Software Requirements Standards, Software
Design Standards and Software Code Standards for the project. Also, references to
the standards for previously developed software, including COTS software, if
those standards are different.

b. Software life cycle: A description of the software life cycle processes to be used
to form the specific software life cycle(s) to be used on the project, including the

F-2

transition criteria for the software development processes. This description is
distinct from the summary provided in the Plan for Software Aspects of
Certification, in that it provides the detail necessary to ensure proper
implementation of the software life cycle processes.

c. Software development environment: A statement of the chosen software
development environment in terms of hardware and software, including:

(1) The chosen requirements development method(s) and tools to be used.

(2) The chosen design method(s) and tools to be used.

(3) The programming language(s), coding tools, compilers, linkage editors and
loaders to be used.

(4) The hardware platforms for the tools to be used.

11.3 Software Verification Plan

The Software Verification Plan is a description of the verification procedures to satisfy
the software verification process objectives. These procedures may vary by software level
as defined in the tables of Annex A. This plan should include:

a. Organization: Organizational responsibilities within the software verification
process and interfaces with the other software life cycle processes.

b. Independence: A description of the methods for establishing verification
independence, when required.

c. Verification methods: A description of the verification methods to be used for
each activity of the software verification process.

(1) Review methods, including checklists or other aids.

(2) Analysis methods, including traceability and coverage analysis.

(3) Testing methods, including guidelines that establish the test case selection
process, the test procedures to be used, and the test data to be produced.

d. Verification environment: A description of the equipment for testing, the testing
and analysis tools, and the guidelines for applying these tools and hardware test
equipment (see also paragraph 4.4.3, item b for guidance on indicating target
computer and simulator or emulator differences).

e. Transition criteria: The transition criteria for entering the software verification
process defined in this plan.

f. Partitioning considerations: If partitioning is used, the methods used to verify the
integrity of the partitioning.

g. Compiler assumptions: A description of the assumptions made by the applicant
about the correctness of the compiler, linkage editor or loader (paragraph 4.4.2).

h. Reverification guidelines: For software modification, a description of the methods
for identifying the affected areas of the software and the changed parts of the
Executable Object Code. The reverification should ensure that previously reported
errors or classes of errors have been eliminated.

i. Previously developed software: For previously developed software, if the initial
compliance baseline for the verification process does not comply with this
document, a description of the methods to satisfy the objectives of this document.

F-3

j. Multiple-version dissimilar software: If multiple-version dissimilar software is
used, a description of the software verification process activities (paragraph
12.3.3).

11.4 Software Configuration Management Plan

The Software Configuration Management Plan establishes the methods to be used to
achieve the objectives of the software configuration management (SCM) process
throughout the software life cycle. This plan should include:

a. Environment: A description of the SCM environment to be used, including
procedures, tools, methods, standards, organizational responsibilities, and
interfaces.

b. Activities: A description of the SCM process activities in the software life cycle
that will satisfy the objectives for:

(1) Configuration identification: Items to be identified, when they will be
identified, the identification methods for software life cycle data (for
example, part numbering), and the relationship of software identification
and airborne system or equipment identification.

(2) Baselines and traceability: The means of establishing baselines, what
baselines will be established, when these baselines will be established, the
software library controls, and the configuration item and baseline
traceability.

(3) Problem reporting: The content and identification of problem reports for
the software product and software life cycle processes, when they will be
written, the method of closing problem reports, and the relationship to the
change control activity.

(4) Change control: Configuration items and baselines to be controlled, when
they will be controlled, the problem/change control activities that control
them, pre-certification controls, post-certification controls, and the means of
preserving the integrity of baselines and configuration items.

(5) Change review: The method of handling feedback from and to the software
life cycle processes; the methods of assessing and prioritizing problems,
approving changes, and handling their resolution or change implementation;
and the relationship of these methods to the problem reporting and change
control activities.

(6) Configuration status accounting: The data to be recorded to enable
reporting configuration management status, definition of where that data
will be kept, how it will be retrieved for reporting, and when it will be
available.

(7) Archive, retrieval, and release: The integrity controls, the release method
and authority, and data retention.

(8) Software load control: A description of the software load control
safeguards and records.

(9) Software life cycle environment controls: Controls for the tools used to
develop, build, verify and load the software, addressing items 1 through 7
above. This includes control of tools to be qualified.

(10) Software life cycle data controls: Controls associated with Control
Category 1 and Control Category 2 data.

c. Transition criteria: The transition criteria for entering the SCM process.

F-4

d. SCM data: A definition of the software life cycle data produced by the SCM
process, including SCM Records, the Software Configuration Index and the
Software Life Cycle Environment Configuration Index.

e. Supplier control: The means of applying SCM process requirements to sub-tier
suppliers.

11.5 Software Quality Assurance Plan

The Software Quality Assurance Plan establishes the methods to be used to achieve the
objectives of the software quality assurance (SQA) process. The SQA Plan may include
descriptions of process improvement, metrics, and progressive management methods.
This plan should include:

a. Environment: A description of the SQA environment, including scope,
organizational responsibilities and interfaces, standards, procedures, tools and
methods.

b. Authority: A statement of the SQA authority, responsibility, and independence,
including the approval authority for software products.

c. Activities: The SQA activities that are to be performed for each software life
cycle process and throughout the software life cycle including:

(1) SQA methods, for example, reviews, audits, reporting, inspections, and
monitoring of the software life cycle processes.

(2) Activities related to the problem reporting, tracking and corrective action
system.

(3) A description of the software conformity review activity.

d. Transition criteria: The transition criteria for entering the SQA process.

e. Timing: The timing of the SQA process activities in relation to the activities of the
software life cycle processes.

f. SQA Records: A definition of the records to be produced by the SQA process.

g. Supplier control: A description of the means of ensuring that sub-tier suppliers'
processes and outputs will comply with the SQA Plan.

11.6 Software Requirements Standards

The purpose of Software Requirements Standards is to define the methods, rules and
tools to be used to develop the high-level requirements. These standards should include:

a. The methods to be used for developing software requirements, such as structured
methods.

b. Notations to be used to express requirements, such as data flow diagrams and
formal specification languages.

c. Constraints on the use of the requirement development tools.

d. The method to be used to provide derived requirements to the system process.

11.7 Software Design Standards

The purpose of Software Design Standards is to define the methods, rules and tools to be
used to develop the software architecture and low-level requirements. These standards
should include:

a. Design description method(s) to be used.

F-5

b. Naming conventions to be used.

c. Conditions imposed on permitted design methods, for example, scheduling, and
the use of interrupts and event-driven architectures, dynamic tasking, re-entry,
global data, and exception handling, and rationale for their use.

d. Constraints on the use of the design tools.

e. Constraints on design, for example, exclusion of recursion, dynamic objects, data
aliases, and compacted expressions.

f. Complexity restrictions, for example, maximum level of nested calls or conditional
structures, use of unconditional branches, and number of entry/exit points of code
components.

11.8 Software Code Standards

The purpose of the Software Code Standards is to define the programming languages,
methods, rules and tools to be used to code the software. These standards should include:

a. Programming language(s) to be used and/or defined subset(s). For a programming
language, reference the data that unambiguously defines the syntax, the control
behavior, the data behavior and side-effects of the language. This may require
limiting the use of some features of a language.b. Source Code presentation
standards, for example, line length restriction, indentation, and blank line usage
and Source Code documentation standards, for example, name of author, revision
history, inputs and outputs, and affected global data.

c. Naming conventions for components, subprograms, variables, and constants.

d. Conditions and constraints imposed on permitted coding conventions, such as the
degree of coupling between software components and the complexity of logical or
numerical expressions and rationale for their use.

e. Constraints on the use of the coding tools.

F-6

Example Software Requirements

Appendix G

G-1

Requirements for TDLRSP
(Touch Down Landing Radar Sensor Processing)

G-2

G-3

G-4

G-5

G-6

Example Software Design

Appendix H

H-1

Design for TDLRSP
(Touch Down Landing Radar Sensor Processing)

H-2

H-3

H-4

H-5

H-6

H-7

H-8

Example Software Code

Appendix I

I-1

**
* Module: TDLRSP.FOR
* Facility: Pluto
* P-Spec: 1.5
* Abstract:
* This module contains the implementation of the functional
* requirements for TDLRSP.
*
* List of Routines:
* subroutine TDLRSP
**

**
* Title: TDLRSP
* Facility: Pluto
* Abstract:
* 1) Maintain the history of the vehicle velocities and the
* velocity computation indicator
* 2) Determine the operational status of touch down landing radar
* sensor
* 3) Report the current vehicle velocities along each of the
* vehicle's three axes
* 4) Report the velocity computation indicators.
*
* Arguments: None
* Revision History:
* v0 15-sep-1994 Rob Angellatta (RKA) Original.
* v1 30-Nov-1994 Philip Morris (PEM)
* v2 10-JAN-1995 Philip Morris (PEM)
**

 subroutine TDLRSP

 implicit none

*** include the global common stores ***

 include 'external.for'
 include 'guidance_state.for'
 include 'sensor_output.for'
 include 'run_parameters.for'

*** include constant definitions ***

 include 'constants.for'

*** declare local variables ***

 integer*4 i

 real*8 b(4)
 real*8 pbvX
 real*8 pbvY
 real*8 pbvZ

 real*8 elapsed_time

I-2

**
* 1) Maintain the history of the vehicle velocities and the
* velocity computation indicator by "rotating variables." The data
**

 TDLR_VELOCITY(1, 4) = TDLR_VELOCITY(1, 3)
 TDLR_VELOCITY(1, 3) = TDLR_VELOCITY(1, 2)
 TDLR_VELOCITY(1, 2) = TDLR_VELOCITY(1, 1)
 TDLR_VELOCITY(1, 1) = TDLR_VELOCITY(1, 0)

 TDLR_VELOCITY(2, 4) = TDLR_VELOCITY(2, 3)
 TDLR_VELOCITY(2, 3) = TDLR_VELOCITY(2, 2)
 TDLR_VELOCITY(2, 2) = TDLR_VELOCITY(2, 1)
 TDLR_VELOCITY(2, 1) = TDLR_VELOCITY(2, 0)

 TDLR_VELOCITY(3, 4) = TDLR_VELOCITY(3, 3)
 TDLR_VELOCITY(3, 3) = TDLR_VELOCITY(3, 2)
 TDLR_VELOCITY(3, 2) = TDLR_VELOCITY(3, 1)
 TDLR_VELOCITY(3, 1) = TDLR_VELOCITY(3, 0)

 K_MATRIX(1, 1, 4) = K_MATRIX(1, 1, 3)
 K_MATRIX(1, 2, 4) = K_MATRIX(1, 2, 3)
 K_MATRIX(1, 3, 4) = K_MATRIX(1, 3, 3)
 K_MATRIX(2, 1, 4) = K_MATRIX(2, 1, 3)
 K_MATRIX(2, 2, 4) = K_MATRIX(2, 2, 3)
 K_MATRIX(2, 3, 4) = K_MATRIX(2, 3, 3)
 K_MATRIX(3, 1, 4) = K_MATRIX(3, 1, 3)
 K_MATRIX(3, 2, 4) = K_MATRIX(3, 2, 3)
 K_MATRIX(3, 3, 4) = K_MATRIX(3, 3, 3)

 K_MATRIX(1, 1, 3) = K_MATRIX(1, 1, 2)
 K_MATRIX(1, 2, 3) = K_MATRIX(1, 2, 2)
 K_MATRIX(1, 3, 3) = K_MATRIX(1, 3, 2)
 K_MATRIX(2, 1, 3) = K_MATRIX(2, 1, 2)
 K_MATRIX(2, 2, 3) = K_MATRIX(2, 2, 2)
 K_MATRIX(2, 3, 3) = K_MATRIX(2, 3, 2)
 K_MATRIX(3, 1, 3) = K_MATRIX(3, 1, 2)
 K_MATRIX(3, 2, 3) = K_MATRIX(3, 2, 2)
 K_MATRIX(3, 3, 3) = K_MATRIX(3, 3, 2)

 K_MATRIX(1, 1, 2) = K_MATRIX(1, 1, 1)
 K_MATRIX(1, 2, 2) = K_MATRIX(1, 2, 1)
 K_MATRIX(1, 3, 2) = K_MATRIX(1, 3, 1)
 K_MATRIX(2, 1, 2) = K_MATRIX(2, 1, 1)
 K_MATRIX(2, 2, 2) = K_MATRIX(2, 2, 1)
 K_MATRIX(2, 3, 2) = K_MATRIX(2, 3, 1)
 K_MATRIX(3, 1, 2) = K_MATRIX(3, 1, 1)
 K_MATRIX(3, 2, 2) = K_MATRIX(3, 2, 1)
 K_MATRIX(3, 3, 2) = K_MATRIX(3, 3, 1)

 K_MATRIX(1, 1, 1) = K_MATRIX(1, 1, 0)
 K_MATRIX(1, 2, 1) = K_MATRIX(1, 2, 0)
 K_MATRIX(1, 3, 1) = K_MATRIX(1, 3, 0)
 K_MATRIX(2, 1, 1) = K_MATRIX(2, 1, 0)
 K_MATRIX(2, 2, 1) = K_MATRIX(2, 2, 0)

I-3

 K_MATRIX(2, 3, 1) = K_MATRIX(2, 3, 0)
 K_MATRIX(3, 1, 1) = K_MATRIX(3, 1, 0)
 K_MATRIX(3, 2, 1) = K_MATRIX(3, 2, 0)
 K_MATRIX(3, 3, 1) = K_MATRIX(3, 3, 0)

**
* 2) Determine the operational status of touch down landing radar sensor.
**

 TDLR_STATUS(1) = K$HEALTHY
 TDLR_STATUS(2) = K$HEALTHY
 TDLR_STATUS(3) = K$HEALTHY
 TDLR_STATUS(4) = K$HEALTHY

**
* 3) Reporting the current vehicle velocities along each of the
* vehicle's three axes and reporting the velocity computation
* indicators.
**

**
* 3A) Determine the state of the four radar beams.
*
* The data element TDLR_STATE contains the state of the radar
* beams.
*
* Valid radar beam states are "locked" (value 1) and "unlocked"
* (value 0). The present state of a radar beam is determined from
* the current value of the sensor data and the previous state of
* the radar beam. A sensor measurement of zero indicates that the
* radar beam echo was not received and the radar beam is considered
* to be "unlocked." A non-zero sensor measurement indicates that a
* radar beam echo was received, but does not imply a radar beam
* state of "locked." Because, once a radar beam is declared
* "unlocked," it is rendered unusable (remains "unlocked"
* regardless of the sensor data value) for a specified period of
* time. This waiting period must be implemented in the software.
*
* A beam is deemed "locked" when 1) the current sensor value
* contains a non-zero value and the beam's previous state was
* "locked"; or 2) the current sensor value contains a non-zero
* value and the beam's previous state was "unlocked" and the
* elapsed time since the beam was determined "unlocked" is greater
* than or equal to the sensor recovery period.
*
* The data element TDLR_LOCK_TIME specifies the unlocked sensor
* recovery (waiting) period. The data element FRAME_BEAM_UNLOCKED
* is updated with the value of the FRAME_COUNTER during the frame
* in which a radar beam state is first determined as "unlocked."
* The data element DELTA_T specifies in seconds the duration of a
* single frame. Thus the elapsed time since a radar beam was
* declared "unlocked" can be determined by subtracting the present
* value of FRAME_COUNTER from the value of FRAME_BEAM_UNLOCKED and
* multipling the result by the value of DELTA_T.
**

I-4

**** process each radar beam ***

 do 100 i=1,4

 if (TDLR_COUNTER(i) .EQ. 0) then

 if (TDLR_STATE(i) .EQ. K$BEAM_LOCKED) then
 TDLR_STATE(i) = K$BEAM_UNLOCKED
 FRAME_BEAM_UNLOCKED(i) = FRAME_COUNTER

* v2 Changes for AR#24. Item 7. Added else if.

* else
 elseif (TDLR_STATE(i) .EQ. K$BEAM_UNLOCKED) then

* v2 Changes for AR#24. End Change.

* the beam was unlocked
 elapsed_time = DELTA_T *
 & (FRAME_COUNTER - FRAME_BEAM_UNLOCKED(i))

 if (elapsed_time .GE. TDLR_LOCK_TIME) then
 FRAME_BEAM_UNLOCKED(i) = FRAME_COUNTER
 end if
 end if

 else
* the sensor measurement != 0

 if (TDLR_STATE(i) .EQ. K$BEAM_UNLOCKED) then
 elapsed_time = DELTA_T *
 & (FRAME_COUNTER - FRAME_BEAM_UNLOCKED(i))

 if (elapsed_time .GE. TDLR_LOCK_TIME) then
 TDLR_STATE(i) = K$BEAM_LOCKED
 end if
 end if
 end if
 100 continue

**
* 3B) Determine the beam velocities.
**

 do 200 i=1,4
 b(i) = TDLR_OFFSET + TDLR_GAIN * TDLR_COUNTER(i)
 200 continue

**
* 3C) Determine the "processed" beam velocities, and
* 4) Determine the velocity computation indicators.
**
**
* Compute a "processed" beam velocity for each of the three axes as
* specified by the following table:

I-5

*
* Beams | PROCESSED BEAM VELOCITIES | K-MATRIX | Case
* in lock | pbvX pbvY pbvZ | X Y Z | Number
* --------|---------------|---------------|---------------|----------------
* none | 0 | 0 | 0 | 0 | 0 | 0 | 0
* 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1
* 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2
* 3 | 0 | 0 | 0 | 0 | 0 | 0 | 4
* 4 | 0 | 0 | 0 | 0 | 0 | 0 | 8
* --------|---------------|---------------|---------------|----------------
* 1,2 | 0 | (b(1)-b(2))/2 | 0 | 0 | 1 | 0 | 3
* 1,3 | (b(1)+b(3))/2 | 0 | 0 | 1 | 0 | 0 | 5
* 1,4 | 0 | 0 | (b(1)-b(4))/2 | 0 | 0 | 1 | 9
* 2,3 | 0 | 0 | (b(2)-b(3))/2 | 0 | 0 | 1 | 6
* 2,4 | (b(2)+b(4))/2 | 0 | 0 | 1 | 0 | 0 | 10
* 3,4 | 0 | (b(4)-b(3))/2 | 0 | 0 | 1 | 0 | 12
* --------|---------------|---------------|---------------|----------------
* 1,2,3 | (b(1)+b(3))/2 | (b(1)-b(2))/2 | (b(2)-b(3))/2 | 1 | 1 | 1 | 7
* 1,2,4 | (b(2)+b(4))/2 | (b(1)-b(2))/2 | (b(1)-b(4))/2 | 1 | 1 | 1 | 11
* 1,3,4 | (b(1)+b(3))/2 | (b(4)-b(3))/2 | (b(1)-b(4))/2 | 1 | 1 | 1 | 13
* 2,3,4 | (b(2)+b(4))/2 | (b(4)-b(3))/2 | (b(2)-b(3))/2 | 1 | 1 | 1 | 14
* --------|---------------|---------------|---------------|----------------
* 1,2,3,4 | a | b | c | 1 | 1 | 1 | 15
*
* a) (b(1)+b(2)+b(3)+b(4))/4
* b) (b(1)-b(2)-b(3)+b(4))/4
* c) (b(1)+b(2)-b(3)-b(4))/4
*
* Each of the 16 possible cases has been assigned a case number to
* facilitate the description of the necessary processing. The case
* number is found in the column labled "Case Number" in the table
* above.
*
* Determine the case number value for the current processing.
* Each of the four radar beams' state has been assigned a weight
* value: beam 1: 1, beam 2: 2, beam 3: 4, beam 4: 8. The "case
* number" is computed by summing the radar beams multiplied by their
* their weight factors.
**

* v1 Changes for AR#23. Item 24. Default goto 2000 added.

 go to (1000,1000,1000,1010,1000,1020,1040,1070,
 & 1000,1030,1050,1080,1060,1090,1100,1110),
 & TDLR_STATE(1) + 2*TDLR_STATE(2) +
 & 4*TDLR_STATE(3) + 8*TDLR_STATE(4) + 1
 go to 2000

* v1 Changes for AR#23. End Change.

*** cases 0, 1, 2, 4, 8 ***

 1000 pbvX = 0.0
 pbvY = 0.0
 pbvZ = 0.0

I-6

 K_MATRIX(1, 1, 0) = 0
 K_MATRIX(2, 2, 0) = 0
 K_MATRIX(3, 3, 0) = 0
 go to 2000

*** case 3 ***

 1010 pbvX = 0.0
 pbvY = (b(1) - b(2)) / 2.0
 pbvZ = 0.0

 K_MATRIX(1, 1, 0) = 0
 K_MATRIX(2, 2, 0) = 1
 K_MATRIX(3, 3, 0) = 0
 go to 2000

*** case 5 ***

 1020 pbvX = (b(1) + b(3)) / 2.0
 pbvY = 0.0
 pbvZ = 0.0

 K_MATRIX(1, 1, 0) = 1
 K_MATRIX(2, 2, 0) = 0
 K_MATRIX(3, 3, 0) = 0
 go to 2000

*** case 9 ***

 1030 pbvX = 0.0
 pbvY = 0.0
 pbvZ = (b(1) - b(4)) / 2.0

 K_MATRIX(1, 1, 0) = 0
 K_MATRIX(2, 2, 0) = 0
 K_MATRIX(3, 3, 0) = 1
 go to 2000

*** case 6 ***

* v1 Changes for AR#23. Item 25. Goto 2000 added to finish the case properly

 1040 pbvX = 0.0
 pbvY = 0.0
 pbvZ = (b(2) - b(3)) / 2.0

 K_MATRIX(1, 1, 0) = 0
 K_MATRIX(2, 2, 0) = 0
 K_MATRIX(3, 3, 0) = 1
 go to 2000

* v1 Changes for AR#23. End Change.

*** case 10 ***

I-7

 1050 pbvX = (b(2) + b(4)) / 2.0
 pbvY = 0.0
 pbvZ = 0.0

 K_MATRIX(1, 1, 0) = 1
 K_MATRIX(2, 2, 0) = 0
 K_MATRIX(3, 3, 0) = 0
 go to 2000

*** case 12 ***

 1060 pbvX = 0.0
 pbvY = (b(4) - b(3)) / 2.0
 pbvZ = 0.0

 K_MATRIX(1, 1, 0) = 0
 K_MATRIX(2, 2, 0) = 1
 K_MATRIX(3, 3, 0) = 0
 go to 2000

*** case 7 ***

 1070 pbvX = (b(1) + b(3)) / 2.0
 pbvY = (b(1) - b(2)) / 2.0
 pbvZ = (b(2) - b(3)) / 2.0

 K_MATRIX(1, 1, 0) = 1
 K_MATRIX(2, 2, 0) = 1
 K_MATRIX(3, 3, 0) = 1
 go to 2000

*** case 11 ***

 1080 pbvX = (b(2) + b(4)) / 2.0
 pbvY = (b(1) - b(2)) / 2.0
 pbvZ = (b(1) - b(4)) / 2.0

 K_MATRIX(1, 1, 0) = 1
 K_MATRIX(2, 2, 0) = 1
 K_MATRIX(3, 3, 0) = 1
 go to 2000

*** case 13 ***

 1090 pbvX = (b(1) + b(3)) / 2.0
 pbvY = (b(4) - b(3)) / 2.0
 pbvZ = (b(1) - b(4)) / 2.0

 K_MATRIX(1, 1, 0) = 1
 K_MATRIX(2, 2, 0) = 1
 K_MATRIX(3, 3, 0) = 1
 go to 2000

*** case 14 ***

I-8

 1100 pbvX = (b(2) + b(4)) / 2.0
 pbvY = (b(4) - b(3)) / 2.0
 pbvZ = (b(2) - b(3)) / 2.0

 K_MATRIX(1, 1, 0) = 1
 K_MATRIX(2, 2, 0) = 1
 K_MATRIX(3, 3, 0) = 1
 go to 2000

*** case 15 ***

 1110 pbvX = (b(1) + b(2) + b(3) + b(4)) / 4.0
 pbvY = (b(1) - b(2) - b(3) + b(4)) / 4.0
 pbvZ = (b(1) + b(2) - b(3) - b(4)) / 4.0

 K_MATRIX(1, 1, 0) = 1
 K_MATRIX(2, 2, 0) = 1
 K_MATRIX(3, 3, 0) = 1

 2000 continue

**
* 3D) Convert "processed" beam velocities into body velocites.
**

 TDLR_VELOCITY(1, 0) = pbvX / COS(TDLR_ANGLES(1))
 TDLR_VELOCITY(2, 0) = pbvY / COS(TDLR_ANGLES(2))
 TDLR_VELOCITY(3, 0) = pbvZ / COS(TDLR_ANGLES(3))

 return
 end

***** end of module tdlrsp.for ***

Example Software Test Data

Appendix J

J-1

Example Test Case for TDLRSP

3.6 TDLRSP Functional Unit Test Cases

Table 8 is a listing of all test cases for the TDLRSP functional unit. All test cases manipulate the

variables:

FRAME_COUNTER TDLR_COUNTER

FRAME_BEAM_UNLOCKED TDLR_STATE

K_MATRIX TDLR_VELOCITY

For robustness testing purposes, Table 5.11 of the GCS Specification is missing several cases that should

be tested. These conditions are given in Table 7 below. Note that the Beam_lock_time calculated by:

 Beam_lock_time = DELTA_T *(FRAME_COUNTER - FRAME_BEAM_UNLOCKED)

Table 7 also identifies the test cases for each of those conditions. These cases are also repeated in Table 8.

Table 7: Conditions not given in Table 5.11 of the GCS Specification.

Input Output Test Case

TDLR_

STATE

TDLR_

COUNTER

Beam_lock_time

≥ TDLR_LOCK_TIME

TDLR_

STATE

FRAME_BEAM_

UNLOCKED

Names

locked ≠ 0 d locked Unchanged TDLRSP_RO_006.TC

unlocked ≠ 0 no unlocked Unchanged TDLRSP_RO_002.TC

unlocked = 0 no unlocked Unchanged TDLRSP_RO_004.TC

J-2

Table 8: Test cases for TDLRSP functional unit.

Test Case Data
File

Description Test-Input File Expected-
Results File

tdlrsp_nr_001.m Test: 1) TDLR_STATE = 0 & TDLR_COUNTER != 0 (line 2 of table
5.11) 2) line 16 of table 5.12 2) history rotation for
TDLR_VELOCITY & K_MATRIX

tdlrsp_nr_001.tc tdlrsp_nr_001.ex

tdlrsp_ro_002.m Test: 1) TDLR_STATE = 0 & TDLR_COUNTER != 0 but elapsed
time < TDLR_LOCK_TIME (not listed in table 5.11)

tdlrsp_ro_002.tc tdlrsp_ro_002.ex

tdlrsp_nr_003.m Test: TDLR_STATE = 0 & TDLR_COUNTER = 0 (line 3 of table
5.11)

tdlrsp_nr_003.tc tdlrsp_nr_003.ex

tdlrsp_ro_004.m Test: TDLR_STATE = 0 & TDLR_COUNTER = 0 but elapsed time <
TDLR_LOCK_TIME (not listed in table 5.11)

tdlrsp_ro_004.tc tdlrsp_ro_004.ex

tdlrsp_nr_005.m Test: 1) TDLR_STATE = 1 & TDLR_COUNTER = 0 (line 1 of table
5.11) 2) line 1 of table 5.12 (no beams in lock)

tdlrsp_nr_005.tc tdlrsp_nr_005.ex

tdlrsp_ro_006.m Test: 1) TDLR_STATE = 1 & TDLR_COUNTER != 0 (not listed in
table 5.11) 2) line 1 of table 5.12 (no beams in lock)

tdlrsp_ro_006.tc tdlrsp_ro_006.ex

tdlrsp_nr_007.m Test: Beam 1 in lock (line 2 of table 5.12) tdlrsp_nr_007.tc tdlrsp_nr_007.ex

tdlrsp_nr_008.m Test: Beam 2 in lock (line 3 of table 5.12) tdlrsp_nr_008.tc tdlrsp_nr_008.ex

tdlrsp_nr_009.m Test: Beam 3 in lock (line 4 of table 5.12) tdlrsp_nr_009.tc tdlrsp_nr_009.ex

tdlrsp_nr_010.m Test: Beam 4 in lock (line 5 of table 5.12) tdlrsp_nr_010.tc tdlrsp_nr_010.ex

tdlrsp_nr_011.m Test: Beams 1 & 2 in lock (line 6 of table 5.12) tdlrsp_nr_011.tc tdlrsp_nr_011.ex

tdlrsp_nr_012.m Test: Beams 1 & 3 in lock (line 7 of table 5.12) tdlrsp_nr_012.tc tdlrsp_nr_012.ex

tdlrsp_nr_013.m Test: Beams 1 & 4 in lock (line 8 of table 5.12) tdlrsp_nr_013.tc tdlrsp_nr_013.ex

tdlrsp_nr_014.m Test: Beams 2 & 3 in lock (line 9 of table 5.12) tdlrsp_nr_014.tc tdlrsp_nr_014.ex

tdlrsp_nr_015.m Test: Beams 2 & 4 in lock (line 10 of table 5.12) tdlrsp_nr_015.tc tdlrsp_nr_015.ex

tdlrsp_nr_016.m Test: Beams 3 & 4 in lock (line 11 of table 5.12) tdlrsp_nr_016.tc tdlrsp_nr_016.ex

tdlrsp_nr_017.m Test: Beams 1, 2, & 3 in lock (line 12 of table 5.12) tdlrsp_nr_017.tc tdlrsp_nr_017.ex

tdlrsp_nr_018.m Test: Beams 1, 2, & 4 in lock (line 13 of table 5.12) tdlrsp_nr_018.tc tdlrsp_nr_018.ex

tdlrsp_nr_019.m Test: Beams 1, 3, & 4 in lock (line 14 of table 5.12) tdlrsp_nr_019.tc tdlrsp_nr_019.ex

tdlrsp_nr_020.m Test: Beams 2, 3, & 4 in lock (line 15 of table 5.12) tdlrsp_nr_020.tc tdlrsp_nr_020.ex

tdlrsp_nr_021.m Test: ALL Beams in lock (line 16 of table 5.12) tdlrsp_nr_021.tc tdlrsp_nr_021.ex

tdlrsp_ro_022.m Test FRAME_BEAM_UNLOCKED out of UPPER bound tdlrsp_ro_022.tc tdlrsp_ro_022.ex

tdlrsp_ro_023.m Test FRAME_BEAM_UNLOCKED out of LOWER bound tdlrsp_ro_023.tc tdlrsp_ro_023.ex

tdlrsp_ro_024.m Test FRAME_COUNTER out of UPPER bound tdlrsp_ro_024.tc tdlrsp_ro_024.ex

tdlrsp_ro_025.m Test FRAME_COUNTER out of LOWER bound tdlrsp_ro_025.tc tdlrsp_ro_025.ex

tdlrsp_ro_026.m Test TDLR_STATE INVALID value tdlrsp_ro_026.tc tdlrsp_ro_026.ex

tdlrsp_ro_027.m Test TDLR_COUNTER out of LOWER bound tdlrsp_ro_027.tc tdlrsp_ro_027.ex

tdlrsp_ro_028.m Test TDLR_COUNTER out of UPPER bound tdlrsp_ro_028.tc tdlrsp_ro_028.ex

J-3

Example Test Results for TDLRSP

3.1.6 TDLRSP Functional Unit

Code components tested for TDLRSP are given in Table 12.

Table 12: TDLRSP code components.

EXTERNAL.FOR TDLRSP.FOR

RUN_PARAMETERS.FOR UTILITY.FOR

GUIDANCE_STATE.FOR CONSTANTS.FOR

SENSOR_OUTPUT.FOR

Total number of normal range (NR) test cases: 18

Total number of robustness (RO) test cases: 10

The ANA file generated for TDLRSP_RO_026 involves a condition that is not specified in the SPEC.

Although the results of this test run does not agree with the expected values, the results are just as valid

because this robustness test case exercises a condition that is not defined in the Specification. More

specifically, a value of "2" is assigned to the variable TDLR_STATE. Although a "2" is not defined as a

legal value for this variable in the GCS Spec, it is a possible value since the variable is ultimately

implemented as an integer. For robustness test cases, DO-178B requires only that the software not cause

any detrimental effects to the system. For this specific test case, the PLUTO code leaves the values of

K_MATRIX unchanged. This will not have a severe impact on the implementation's ability to deliver the

required function for TDLRSP.

J-4

Table 13: Summary of Requirements-based Testing on the TDLRSP Functional Unit.

TEST CASE
NAME

EXECUTION
DATE

RESULTS .ANA
file/PR #

Reason for Test Run

TDLRSP_NR_xxx 1/4/95 N Initial testing

TDLRSP_RO_xxx N

TDLRSP_RO_026 Y/24

TDLRSP_NR_xx 1/13/95 N Retesting due to PR 24.

TDLRSP_RO_xxx N

TDLRSP_RO_026 Y

TDLRSP_NR_xx 4/7/95 N Retest after Cases & Procedures

TDLRSP_RO_xxx N finalized.

TDLRSP_RO_026 Y

Software Needs Assessment

Appendix K

Software Needs Assessment for Engineers

K-1

Introduction to the Survey

A. Purpose
The Software Needs Assessment will collect aggregate data from engineers who currently
approve software, who will approve software, or who develop guidance for software. Individual
respondents will be anonymous. The results will be used to determine how best to support
engineers in their performance of Aircraft Certification’s software functions. The organizational
profiles obtained from this instrument will be used to develop training and to evaluate staffing
initiatives.

No individual is currently expected to have all the relevant software knowledge and skills.
Varying skill levels exist within the Aircraft Certification organizations. Engineers have done a
good job with their software responsibilities, considering that FAA-offered training has been
very limited.

 The following types of data will be collected in the Survey:
 . ACO/Directorate/Division software workload
 . Type/amount of each organization’s current software knowledge, skill and
 experience in relationship to the required knowledge, skill and ability

Data will be used to do the following:

 . Identify level of software expertise in each organization

 . Describe skill gaps, if existing, in each organization

 . Identify type and level of training and development activities required .

 . Provide input for staff planning and development

B. Knowledge, Skills and Abilities
Each question in the survey measures a required software knowledge, skill or ability (KSA).
These KSAs were obtained from the following sources: (1) Software Grand Design Report, (2)
Order 8110.37B (Designated Engineering Representative System), and (3) the Airborne Software
Substantiation Course Design Guide. These KSAs are considered to be the minimum software
expertise needed to evaluate software by applying DO-178B.

Software Needs Assessment for Engineers

K-2

 The KSAs include:

1. Knowledge of the system safety assessment process in order to establish the software criticality
level.

2. Knowledge of the rationale for, and the significance of, each stage in the software development
process, as well as its supporting standards, procedures and documentation.

3. Ability to apply knowledge of all phases of the software development life cycle addressed in
DO-178B, including the testing processes and configuration and quality control procedures.

4. Sufficient knowledge of at least one high level and one assembly level programming language,
as well as, knowledge of typical support software used in the software development process in
order to be able to evaluate potential problems with the coding and execution process.

5. Knowledge of sources of software anomalies (e.g. errors), relative merits of types of testing
procedures, and characteristics of a thorough test program.

6. Knowledge of computing as it relates to a real-time avionics system, e.g., use of interrupts and
multitasking.

7. Knowledge of hardware characteristics and their impact on software interface and potential to
generate anomalies.

C. Who Will Take This Survey?
All engineers who currently approve or will approve software data submitted
under DO-178B or have responsibility for developing guidance for evaluation of
software.

D. Survey Contents
This is a self assessment instrument with two sets of questions: (1) current software experience
and (2) specific software knowledge, skill, and ability.

Section A of the Survey assesses the software workload activity in the organization.

Section B addresses the degree of software knowledge relative to the KSAs listed above. The
format for this Section includes: (1) the KSA that is being measured, (2) examples of situations
that might arise if the required KSA is not evident, i.e. anomalies and (3) questions that measure
that KSA.

Software Needs Assessment for Engineers

K-3

II. SOFTWARE NEEDS ASSESSMENT INSTRUMENT
NOTE: This Assessment is not intended to evaluate individuals. Only aggregate

data will be collected.

**Please Provide Answers in the Space Provided and on the
 Attached Answer Sheet **

Section A. Current Software Experience
1. Are you currently doing software approvals ? ___yes ____no

2. Rate your relative comfort level if asked to perform a software evaluation on your
own? _______

 (0) low (1) moderate (2) high

3. A. What number of software approvals (including DER submittal approvals and
software approval letters) have you been involved with in your organization
for systems, components, etc. over the past year (e.g. parts of TCs, STCs,
TSOs, changes, etc.)? (If you haven’t been employed for a year, project what
you would have done based on your assignments to date). #____________

 B. What is the approximate percent of approvals made in the following categories?
(0-100%)

 1. TSO projects with software _____%

 2. TC /ATC systems with software ______%

 3. STC systems with software ______%

 4. TC or STC with TSO authorized equipment) _____%

 C. What is the approximate percent of time devoted to software approval?
____________%

 D. Not Applicable (NA) (i.e. software approval is not part of your job _______

4. What is the approximate number of software DERs that you supervise.
#____________

Software Needs Assessment for Engineers

K-4

Section A. Current Software Experience (Cont’)
5. Provide the figures below that represent the software review workload you have

been involved with in the past year. (If you haven’t been employed for a
year, project what you would have done based on your assignments to date).
Write NA if any question is Not Applicable.

 Approximate number of reviews made in the following categories:

 (A) on-site reviews #__________

 (B) desk review #__________

 (C) DER delegation #__________

 (D) Other #__________

6. Provide the approximate number of policy/guidance projects (e.g. committees,
issue papers, review and creation of orders, ACs, regulations, etc.) you have
been involved with regarding the production or review of software related
issues within the last year. (If you haven’t been employed for a year, project
what you would have done based on your assignments to date)
 #______________

 7. Approximately what percent change do you see in the number of software approvals
for which you will be responsible. ______%

8. What percent of on-site software reviews that you conduct are manufacturing
inspectors invited to team with you?_______%

9. How often do the invited inspectors accept the offer to participate in software
reviews?

 1 - almost always

 2 - most of the time

 3 - sometimes

 4- rarely

10. Office identifier (e.g. ANM-100S) ________________

Software Needs Assessment for Engineers

K-5

Section B. Specific Software Knowledge, Skill, and Ability

Scoring for Knowledge, Skill, and Ability Questions
 Read each question and provide a rating of 1 to 4 . Your rating indicates to what degree you
feel capable of answering the questions.

Answers to the questions are given to minimize the confusion as to what constitutes a
comprehensive response. You can therefore better judge to what degree you possess the
knowledge to answer the question. For example, if you can define terms, but can’t answer any
part of the question, rate yourself a “2”. If you are able to answer the complete question, rate
yourself a “4”. Your rating should reflect your knowledge of the subject matter. It is included
to help clarify the question’s meaning or serve to jog your memory. Rate yourself as follows:

! One (1) - No experience (i.e., not able to answer the question)
 Two (2) - Some or little (minimal familiarity with content area)
 Three (3) - Moderate (able to answer some part of question, require resources to
 answer completely)
 Four (4) - Considerable (comprehensive understanding, know or have studied
 principles associated with content)

There are 7 KSAs and a total of 24 questions that measure them.

Software Needs Assessment for Engineers

K-6

KSA #1 Knowledge of the system safety assessment process in order to
establish the software criticality levels.

! Examples to justify why KSA is needed -

The applicant has chosen the wrong software level.

The applicant hasn’t considered the effect of other software components.

QUESTIONS For KSA #1: Read each question and provide a rating of 1 to 4. Your rating
indicates to what degree you feel capable of answering the questions.

1.1 Can you draw a fault tree and show how software fits in? Is software handled as a 1 or a
zero? (Rate 1-4) ___________

 This is somewhat of a difficult question. Basically, software is
 included in a fault tree only to see how it contributes to a given
 failure condition and whether there are any mitigating
 circumstances. When the fault tree is used to calculate
 probabilities, the software branch can be removed. Another
 approach is to give software a value of “1” for all AND
 gates and a value of “0” for all OR gates which has the same effect
 as removal.

1.2 Can you explain the relationship between ARP 4754 and DO-178B in establishing
software level? (Rate 1-4) __________

Although ARP 4754 hasn’t been officially recognized, it provides the basis
for establishing software levels. The material in DO-178B section 2 was
intended to be informative rather than normative with the expectation that
all questions regarding software levels would be addressed in ARP 4754.

1.3 Consider a cruise autopilot where the software developed to level D has the capability of
producing a pitch hard-over which could unacceptably overstress the aircraft
(catastrophic failure condition) and a monitor in software which could disconnect
the autopilot prior to any damage. What is the software level of the monitor and
some important considerations? (Rate 1-4) _______

 According to DO-178B and ARP 4754, the monitor software has
 to be assured to level A and be protected (e.g. partitioned) from
 the other software. However since ARP 4754 is now the informal
 governing guidance the lowest level of the cruise autopilot needs
 to be at level C for this situation. Also, according to ARP 4754
 the hardware reliability for the hardware delivering the monitor
 effects must be equal to or greater than the main command path.

Software Needs Assessment for Engineers

K-7

KSA #2 Knowledge of the rationale for, and the significance of, each
stage in the software development process, as well as its supporting
standards, procedures, and documentation.

! Examples to justify why KSA is needed:

An applicant claims data coverage because they are using a data flow methodology tool.

An applicant provides a functional test that doesn’t provide the degree of structural
coverage claimed.

An applicant’s plans state they are doing a waterfall approach, but their data indicate
incremental development which means the process is not controlled by the plans. The
CM and QA probably don't match as well.

An applicant claims that a McCabe complexity metric of 45 provides adequate code
review criteria.

An applicant claims a tool provides adequate test coverage, but it doesn’t

An applicant claims that their tool provides configuration management, but it doesn’t.

Questions for KSA #2: Read each question and provide a rating of 1 to 4. Your rating
indicates to what degree you feel capable of answering the questions.

2.1 Rate the degree of your expertise in each of the following areas.: (Rate 1-4)

A. S/W Requirements creation ____
B. S/W Design methodologies ____
C. S/W Coding ____
D. S/W Verification ____
E. Reviews/Walkthroughs ____
F. Testing ____
G. S/W Configuration Management ____
H. S/W Quality Assurance ____
I. S/W Metrics ____

Software Needs Assessment for Engineers

K-8

2.2 What is the relationship of where an error is introduced in a software development
lifecycle and where it is found?

 (Rate 1-4) ______

The larger the distance between discovery and correction the larger the
costs. Typically this is a non-linear relationship. Industry has published
that it is 10-100 times more costly to fix a software problem discovered in
service than if it was discovered and fixed during the requirements phase

2.3 What is the relationship between number and type of problems which could be found
doing only software component testing Vs the problems which would be found
doing only code reviews on the same software component? (Rate 1-4) ______

Module testing and code reviews overlap almost 90% in that they will
detect similar type of errors. Clearly, compiler and linker errors will not
get caught nor will a number of run time errors be caught by code reviews.

2.4 What are some definitions of a software baseline?

 (Rate 1-4) ______

Although there are formal definitions of baselines, a more practical
definition would be where one organization or person needs to
communicate stable configuration to a different organization or person. It
is then that the collection of items (e.g. documentation, code, design) is
identified and put under some form of defined control (e.g. configuration
management). The control is designed such that unauthorized changes will
be prevented/detected and authorized changes will be communicated in a
timely manner to affected parties. This controlled collection will define a
baseline. (This is similar to the glossary definition in DO-178B)

2.5 What is your knowledge of at least one design methodology. (e.g. data flow – Ward-
Mellor, Ganes & Sarson, State Machine – state mate, object oriented
development - Booch, HIPO, etc.

 (Rate 1-4) ______

2.6 What are some testing techniques? (Rate 1-4) ______
Partitioning testing
Data flow testing
Logic testing
Mutation testing
Random testing

2.7 What are the problems with applying metrics (e.g. McCabes complexity, Halstead, lines
of code, etc.) to software.

 (Rate 1-4) ______
No accepted level of goodness
Problems in collecting the data.
Selection of a metric that is representative of the desired goal

Software Needs Assessment for Engineers

K-9

KSA #3 Ability to apply knowledge of all phases of the software
development life cycle addressed in DO-178B, including the testing
processes and configuration and quality control procedures.

! Examples to justify why KSA is needed:

An applicant claims that the QA records are what the industry is doing.

An applicant claims that no design is needed and very few people have anything other
than requirements and heavily commented code.

 An applicant’s software development plan is not doable particularly in
 areas affecting DO-178B objectives

Questions for KSA #3: Read each question and provide a rating of 1 to 4. Your rating
indicates to what degree you feel capable of answering the questions.

3.1 Rate your involvement as a production team member in each of the following lifecycle
phases . This could be covered by active participation, a verifier or active
quality assurance person.

 (Rate each 1-4 or NA)
A. SW Requirements creation ____
B. SW Design methodologies ____
C. SW Coding ____
D. SW Verification ____
E. Reviews/Walkthroughs ____
F. Testing ____
G. SW Configuration Management ____
H. SW Quality Assurance ____
I. SW Metrics ____

3.2 What are the issues surrounding an approach that purports to go from software
requirements (high level requirements) direct to code? (Rate 1-4) ______

In some cases a large number of software requirements inherited from the
system requirements are actually at a level of detail that they can be coded
directly. However, the software architecture and other features of the
design need to be documented to provide an appropriate level of
abstraction. Although the practice of coding and then reverse engineering
the design is not unacceptable, it should alert the certification engineer to
examine the traceability and the design to see if the gap between software
requirements and code is adequately bridged. The adequacy of the bridge
would be demonstrated if a hypothetical new engineer can understand the
relationship between code and software requirements.

Software Needs Assessment for Engineers

K-10

3.3 What are some of the pitfalls of a rapid prototyping environment? (Rate 1-4) ______

There may be no defined traceability between the actual code and the
software requirements.

The code may not be robust against the requirements

Configuration control could be lost.

The design may not provide an appropriate level of abstraction to allow
complete evaluation of the testing and verification.

However with appropriate controls and planning these obstacles can be
overcome

Software Needs Assessment for Engineers

K-11

KSA #4 Sufficient knowledge of at least one high level and one assembly
level programming language. Knowledge of typical support
software used in the software development process in order to be
able to evaluate potential problems with the coding and execution
process.

! Examples to justify why KSA is needed:

An applicant claims a group of tests provide test coverage for a given code segment, but
it doesn’t

An applicant has made incorrect assertions about source code to object code
correspondence.

An applicant asserts that they can do their testing on a host with a same language but
different processor and then recompile to the target without further testing.

Questions for KSA #4: Read each question and provide a rating of “1 to 4”. Your rating
indicates to what degree you feel capable of answering the questions

4.1 To what degree are you able to write a program in one high level language
(FORTRAN, Ada, Pascal, PLm, Algol, C, C++, etc.) compile, link, and debug
it? (Rate 1-4) ______

4.2 To what degree can you write a program in an assembly language (68000, 80X86, 8057,
Z80, etc.) and assemble, link, and debug it? (Rate 1-4) ______

Software Needs Assessment for Engineers

K-12

KSA #5 Knowledge of the sources of software anomalies, the relative
merits of the types of testing procedures which are available to
protect against them, and the characteristics of a thorough test
program.

! Examples to justify why KSA is needed:

Problem reports (all closed) could reveal life cycle issues.

The applicant does not have testing that could reveal deadlock problems in multitasking
kernels.

The applicant’s structural coverage analysis is not complete.

An applicant asserts that all structural coverage testing can be done on a VAX computer
for a Level A autopilot using an Intel 80486.

Questions for KSA #5: Read each question and provide a rating of “1 to 4 “.
Your rating indicates to what degree you feel capable of answering the questions.

5.1 What types of problems could be generated during the linking process and what types of
testing could assure that these are minimized? (Rate 1-4) ______

Different variables could be assigned to the same address (data flow
testing,)

Change to variables in different modules that have the same name and
therefore should be at the same address are not .

5.2 What can be deduced from an extensive number of problems found during structural
testing? (Rate 1-4) ______

There are some major problems with previous life cycle phases.
Additional analysis would be needed, but almost everyone agrees that this
is a good indicator of lack of good previous phase development and
possibly verification and to a lesser extent bad design. This also indicates
there is a significant probability of additional errors to be found during in-
service.

5.3 What type of error would be detected using decision coverage, but not detected during
statement coverage? (Rate 1-4) ______

In the case of the empty “else” (e.g. IF A then S1 S2 S3 ENDIF) statement
coverage would fail to determine if the program operated correctly if A
was false.)

Software Needs Assessment for Engineers

K-13

KSA #6 Knowledge of computing as it relates to a real-time avionics
system, e.g., use of interrupts, multitasking.

! Examples to justify why KSA is needed:

A basic Rate Monatomic Analysis (RMA) is presented showing that the system is able to
be scheduled, but some of the assumptions for the basic RMA model have been violated

There is no analysis showing freedom from deadlock, livelock and other real time issues

The timing analysis for a Round Robin Scheduler uses a monitor which tracked free time
available. This monitor was active from the first unit tested all the way through flight
test. The potentially incorrect assertion is that there is 34.6% timing margin available
worst case.

Questions for KSA #6: Read each question and provide a rating of “1 to 4”. Your
rating indicates to what degree you feel capable of answering the questions.

6.1 How is timing analysis done for a round robin scheduler? What would you expect from
an applicant who provided timing analysis? (Rate 1-4) ______

For a round robin scheduler, the applicant should have an analysis showing worst case timing
paths through the program. The applicant can either provide a computed timing
analysis based on the instruction execution time from the processor user or
technical manual or actually provide a test condition at the worst case timing
scenario and record the timing margin. In most cases, the worst case path,
although feasible from the program logic, is unfeasible from the physical
constraint of the operating environment. This can be accepted providing the
analysis demonstrating this is documented. Also the use of caching and any
branch prediction techniques needs to be considered as part of the analysis

6.2 How is timing analysis done for a multitasking operating system? What would you
expect from an applicant provided timing analysis? (Rate 1-4) ______

Rate Monotonic Analysis (RMA) is the basic approach accepted for
measuring the capability of a multitasking system for meeting hard real
time deadlines. However, there are a number of sub-models associated
with various assumptions in how the multitasking system is implemented.
These assumptions need to be validated for a particular combination of
operating systems and RMA model.

Software Needs Assessment for Engineers

K-14

KSA #7 Knowledge of hardware characteristics which have an impact on
the software interface and the potential for the creation of anomalies

! Examples to justify why KSA is needed:

An applicant asserts their system enforces partitioning between programs with different
software level assurances, but there are memory overlaps between the two programs.

An applicant asserts that they can do their testing on a host with a same language, but
different processor and then recompile to the target without further testing.

Questions for KSA #7: Read each question and provide a rating of “1 to 4”). Your rating
indicates to what degree you feel capable of answering the questions.

7.1 How does in interrupt controller work? (Rate 1-4) ______

An interrupt controller is typically used to expand the number of interrupts
a processor can handle. A typical controller can be programmed by the processor
to set up priorities, masking, etc.

7.2 How are memory protection zones set up? (Rate 1-4) ______
 Not all computers have the capability to have built-in memory
 protection. The ones that do typically have two or more different
 processor modes. One mode is privileged and has access to all
 instructions of the computer. The other mode has a restricted set
 of instructions. In the privileged mode, the computer can set up
 various registers or other hardware elements that allow program
 segments to be associated with specific memory areas for both
 instructions and data and have the hardware enforce memory
 references to only the areas allowed. Accesses outside the
 approved areas usually result in an exception/interrupt to the
 processor while preventing access to the illegal memory. These
 protections can be set for read, write, or both. If the processors do
 not have built-in memory protection, it can be produced by adding
 extra components to the computer.

7.3 How does instruction/memory cache affect timing analysis and what can be done to
overcome these problems? (Rate 1-4) ______

Instruction/memory cache can markedly change (usually increase) the
apparent speed of a processor. When timing measurements are made
under round robin scheduler, and the timing is near the 0% margin, extra
effort and analysis is required to ensure a useable margin or ensure that
architectural issues can handle frame overruns. Similar concerns need to
be addressed when using a rate montonic analysis.

Software Needs Assessment for Engineers

K-15

7.4 What is an In circuit emulator and how might the output be used? (Rate 1-4) ______
 An in circuit emulator is a device to replace the main
 processor of a computer system so that more visibility into
 the micro operation of the program and hardware can be
 examined. This allows transparent (or almost transparent)
 ability to monitor detailed operation of an executing
 program by setting breakpoints based on data or branching
 criteria as well as providing a number of real time
 representations of processor operation. In some cases the
 outputs from this may be needed to meet the expected
 results of system and module test procedures.

PLEASE PROVIDE ANY COMMENTS ON THE NEEDS ASSESSMENT ON
THE BACK OF THIS PAGE, IF NEEDED.

Software Needs Assessment for Engineers

K-16

Course Evaluation Form

Appendix L

Course Evaluation Form

Interactive Video Teletraining Course November 28, 2001 Software For
Federal Aviation Administration Managers

Please give us your candid opinions concerning the training you’ve just completed. Your
evaluation of the IVT course is important to us and will help us provide the best possible
products and service to you.

Course title: Understanding AIR’s Software Approval Process – A Course for
Managers

Date: November 28, 2001

Number of years of FAA experience: ______________

(Optional)
Name: Office phone: ()

For the following, please completely darken the circle appropriate to your response.

 Very Very
 Good Good Average Poor Poor N/A
 A B C D E F

1. Length of course $ $ $ $ $ $

2. Depth of information $ $ $ $ $ $

3. Pace of training $ $ $ $ $ $

4. Clarity of objects $ $ $ $ $ $

5. Sequence of content $ $ $ $ $ $

6. Amount of activities/practice $ $ $ $ $ $

7. Quality of course materials $ $ $ $ $ $

8. Effectiveness of instructor $ $ $ $ $ $

9. Overall quality of the course $ $ $ $ $ $

10. Overall effectiveness of the
IVT forms $ $ $ $ $ $

Please send this completed form to your

Directorate/Division Training Manager (ATM). Thank you.

NOTES:

Interactive Video Teletraining Course November 28, 2001 Software For
Federal Aviation Administration Managers

	IVT Course Orientation
	Appendices
	RTCA/DO-178B Tables
	DO-178B Planning Information
	Example Software Requirements
	Example Software Design

	appendix b - 178b tables.pdf
	Table A-1
	
	
	
	
	Software Planning Process

	Table A-2
	Table A-3
	Table A-4
	Table A-5
	Table A-6
	Table A-7
	Table A-8
	Table A-9
	Table A-10

	app c - roles.pdf
	Table of Contents
	1.0	Introduction
	2.0	Roles and Responsibilities for the SW-ASE
	2.1	Roles and Responsibilities of SW-ASE’s in Software Approvals under the TC/ATC/STC Processes
	2.1.1	Communication and Planning
	2.2.2	Implementation
	2.2.3	Future Planning and Involvement

	2.3	Roles and Responsibilities of SW-ASE’s in the Software Aspects of the Production Certificate Process.
	2.4	Roles and Responsibilities of SW-ASE’s in the Software Aspects of the Parts Manufacturer Approval (PMA) Process.
	
	Table 3. Roles and Responsibilities for SW-ASE’s in the PMA Process

	2.5	Roles and Responsibilities of SW-ASE’s in the Software Aspects of the Technical Standard Order Authorization (TSOA) Process.
	2.5.1	Description of the TSOA Process
	2.5.2	Evaluating Capability
	2.5.3	Issuance of a TSOA
	2.5.4	Roles and Responsibilities in the TSOA Process

	2.6	Roles and Responsibilities of SW-ASE’s in the Software Aspects of the ACSEP Process
	2.7	Roles and Responsibilities for SW-ASE’s in the Software Aspects of the Certificate Management Process
	2.8	Roles and Responsibilities for SW-ASE’s in the Software Aspects of the Designee Management Process

	3.0	ROLES AND RESPONSIBILITIES FOR SOFTWARE NRS
	3.1	NRS Technical Leader Roles and Responsibilities:
	3.2	NRS Certification Software Team Advisor Roles and Responsibilities:

	4.0	ROLES AND RESPONSIBILITIES FOR SOFTWARE TS
	4.1	TS Technical Expert Roles and Responsibilities:
	4.2	TS Certification Software Team Member Roles and Responsibilities:

	5.0	ROLES AND RESPONSIBILITIES FOR DIRECTORATE STAFF
	5.1	The Directorate Staff assumes these roles and responsibilities:

	6.0	ROLES AND RESPONSIBILITIES FOR HEADQUARTERS STAFF.

	appendix d - lofi.pdf
	Table 3. Level of Involvement Determination
	TABLE 4. TYPICAL PROGRAM DECISIONS BASED ON LOFI OUTCOME

	Applicant: ________________________________
	ACO Engineer: ____________________________
	MIDO/MISO Inspector: _____________________
	DER Name: _______________________________
	TSR (from Table 2): ________________________
	Resulting LOFI: __________________________
	Plan Based on LOFI Assessment: (e.g., number of FAA on-site reviews, number of FAA desk reviews, data to be submitted to the FAA, delegation to DERs, etc.)
	Mid-Project Corrections: (based on project improvements or problems)
	Actual Project Results: (e.g., number of FAA on-site reviews, number of FAA desk reviews, data submitted to the FAA, delegation to DERs, etc.)

	appendix f - planning documents.pdf
	11.1	Plan for Software Aspects of Certification
	11.2	Software Development Plan
	11.3	Software Verification Plan
	11.4	Software Configuration Management Plan
	11.5	Software Quality Assurance Plan
	11.6	Software Requirements Standards
	11.7	Software Design Standards
	11.8	Software Code Standards

	appendix k - needs.pdf
	Introduction to the Survey
	A. Purpose
	. Identify level of software expertise in each organization
	. Describe skill gaps, if existing, in each organization
	. Identify type and level of training and development activities required		.
	. Provide input for staff planning and development
	B. Knowledge, Skills and Abilities
	C. Who Will Take This Survey?
	All engineers who currently approve or will approve software data submitted under DO-178B or have responsibility for developing guidance for evaluation of software.
	II. SOFTWARE NEEDS ASSESSMENT INSTRUMENT
	NOTE: This Assessment is not intended to evaluate individuals. Only aggregate data will be collected.
	**Please Provide Answers in the Space Provided and on the 						Attached Answer Sheet **
	Section A. Current Software Experience
	Section A. Current Software Experience (Cont’)

	Section B. Specific Software Knowledge, Skill, and Ability
	Scoring for Knowledge, Skill, and Ability Questions
	One (1) - No experience (i.e., not able to answer the question)

	KSA #1 Knowledge of the system safety assessment process in order to establish the software criticality levels.
	Examples to justify why KSA is needed -
	The applicant has chosen the wrong software level.
	The applicant hasn’t considered the effect of other software components.
	1.1 Can you draw a fault tree and show how software fits in? Is software handled as a 1 or a zero? (Rate 1-4) ___________
	1.2 Can you explain the relationship between ARP 4754 and DO-178B in establishing software level? (Rate 1-4) __________
	Although ARP 4754 hasn’t been officially recognized, it provides the basis for establishing software levels. The material in DO-178B section 2 was intended to be informative rather than normative with the expectation that all questions regarding softwar

	1.3 Consider a cruise autopilot where the software developed to level D has the capability of producing a pitch hard-over which could unacceptably overstress the aircraft (catastrophic failure condition) and a monitor in software which could disconnect

	KSA #2 Knowledge of the rationale for, and the significance of, each stage in the software development process, as well as its supporting standards, procedures, and documentation.
	Examples to justify why KSA is needed:
	
	
	
	E.	Reviews/Walkthroughs			____
	F.	Testing						____
	G.	S/W Configuration Management	____

	The larger the distance between discovery and correction the larger the costs. Typically this is a non-linear relationship. Industry has published that it is 10-100 times more costly to fix a software problem discovered in service than if it was disco
	Module testing and code reviews overlap almost 90% in that they will detect similar type of errors. Clearly, compiler and linker errors will not get caught nor will a number of run time errors be caught by code reviews.
	Although there are formal definitions of baselines, a more practical definition would be where one organization or person needs to communicate stable configuration to a different organization or person. It is then that the collection of items (e.g. docum
	Logic testing

	KSA #3 Ability to apply knowledge of all phases of the software development life cycle addressed in DO-178B, including the testing processes and configuration and quality control procedures.
	Examples to justify why KSA is needed:
	
	
	
	E.	Reviews/Walkthroughs		____
	F.	Testing				____

	In some cases a large number of software requirements inherited from the system requirements are actually at a level of detail that they can be coded directly. However, the software architecture and other features of the design need to be documented to
	There may be no defined traceability between the actual code and the software requirements.
	The code may not be robust against the requirements
	Configuration control could be lost.
	The design may not provide an appropriate level of abstraction to allow complete evaluation of the testing and verification.
	However with appropriate controls and planning these obstacles can be overcome

	KSA #4 Sufficient knowledge of at least one high level and one assembly level programming language. Knowledge of typical support software used in the software development process in order to be able to evaluate potential problems with the coding and
	Examples to justify why KSA is needed:
	Questions for KSA #4: Read each question and provide a rating of “1 to 4”. Your rating indicates to what degree you feel capable of answering the questions
	4.1 To what degree are you able to write a program in one high level language (FORTRAN, Ada, Pascal, PLm, Algol, C, C++, etc.) compile, link, and debug it? (Rate 1-4) ______

	KSA #5 Knowledge of the sources of software anomalies, the relative merits of the types of testing procedures which are available to protect against them, and the characteristics of a thorough test program.
	Examples to justify why KSA is needed:
	
	Different variables could be assigned to the same address (data flow testing,)
	Change to variables in different modules that have the same name and therefore should be at the same address are not .
	There are some major problems with previous life cycle phases. Additional analysis would be needed, but almost everyone agrees that this is a good indicator of lack of good previous phase development and possibly verification and to a lesser extent bad
	In the case of the empty “else” (e.g. IF A then S1 S2 S3 ENDIF) statement coverage would fail to determine if the program operated correctly if A was false.)

	KSA #6 Knowledge of computing as it relates to a real-time avionics system, e.g., use of interrupts, multitasking.
	Examples to justify why KSA is needed:
	
	Rate Monotonic Analysis (RMA) is the basic approach accepted for measuring the capability of a multitasking system for meeting hard real time deadlines. However, there are a number of sub-models associated with various assumptions in how the multitaskin

	KSA #7 Knowledge of hardware characteristics which have an impact on the software interface and the potential for the creation of anomalies
	Examples to justify why KSA is needed:
	
	An interrupt controller is typically used to expand the number of interrupts a processor can handle. A typical controller can be programmed by the processor to set up priorities, masking, etc.
	7.2 How are memory protection zones set up? (Rate 1-4) 	______
	Instruction/memory cache can markedly change (usually increase) the apparent speed of a processor. When timing measurements are made under round robin scheduler, and the timing is near the 0% margin, extra effort and analysis is required to ensure a use

	app i - code.pdf
	* Module:	TDLRSP.FOR

	app j - test.pdf
	Example Test Case for TDLRSP
	3.6 TDLRSP Functional Unit Test Cases
	Example Test Results for TDLRSP
	3.1.6 TDLRSP Functional Unit

	app e - job aid.pdf
	Job Aid –Table of Contents
	Appendices
	Tables
	
	
	
	
	
	Ref
	Ref
	Ref
	Ref
	Ref
	Ref
	Ref
	Ref
	Ref
	Ref

